• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HUANG Maosong, REN Qing, WANG Weidong, CHEN Zheng. Analysis for ultimate uplift capacity of tension piles under deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1689-1695.
Citation: HUANG Maosong, REN Qing, WANG Weidong, CHEN Zheng. Analysis for ultimate uplift capacity of tension piles under deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1689-1695.

Analysis for ultimate uplift capacity of tension piles under deep excavation

More Information
  • Published Date: November 14, 2007
  • Determination of the ultimate uplift capacity for tension piles play a dominant role in engineering design.Unfortunately,due to the limitation of in-situ test conditions,it is almost impossible to obtain the ultimate uplift capacity of tension piles under deep excavation from field tests,and the theoretical study becomes the only feasible way to solve this problem.Adopting the Coulomb friction model for the pile-soil interface with direct constraints,two full-scale field tests on single uplift pile with uniform cross-section and enlarged head were simulated by employing the elastoplastic finite element method,and the simulated results were in good accordance with the field test data.Based on the above-mentioned analysis approach and calculation parameters,the difference between the uniform cross-section piles and the belled piles was examined and a comprehensive study focusing on the effects of excavation width and embedment depth was performed.Finally,suggestions for determining the ultimate uplift capacity of tension piles under deep excavation were given.
  • Related Articles

    [1]WANG Zhi-jie, YANG Guang-qing, WANG He, LIU Wei-Chao. Mesoscopic numerical studies on geogrid-soil interface behavior under rigid and flexible top boundary conditions[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 967-973. DOI: 10.11779/CJGE201905021
    [2]WANG Jia-quan, LU Meng-liang, ZHOU Yue-fu, ZHANG Liang-liang. Bearing characteristics of reinforced soil with longitudinal and transverse ribs of geogrids[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 186-193. DOI: 10.11779/CJGE201801020
    [3]CHEN Chang-fu, LIANG Guan-ting, TANG Yu, XU You-lin. Anchoring solid-soil interface behavior using a novel laboratory testing technique[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1115-1122. DOI: 10.11779/CJGE201506018
    [4]ZHENG Jun-jie, MIAO Chen-xi, XIE Ming-xing, ZHANG Jun. Interface properties and influence of particle size on geogrid reinforcement performance by DEM[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1423-1428.
    [5]ZHU Hong-hu, ZHANG Cheng-cheng, PEI Hua-fu, ZHOU You, SHI Bin. Pullout mechanism of GFRP soil nails[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1843-1849.
    [6]DUAN Jian, YAN Zhi-xin, GUO Rui-jian, LIU Zi-zhen, REN Zhi-hua. Failure analysis of soil anchors induced by loose interface under pullout load[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 936-941.
    [7]WANG Qi-yun, XIONG Zhi-biao, ZHANG Jia-sheng, CHEN Xiao-bin. Model tests on resistance behaviors of rock-concrete interface of rock-sockted piles in red-sandstone rock[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 661.
    [8]Experimental methods for interface behaviors of geosynthetics in landfills[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5).
    [9]ZHANG Mengxi, HUANG Chao. Ultimate pullout resistance model for rigid denti-strip reinforced soil[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1336-1344.
    [10]YANG Guangqing, LI Guangxin, ZHANG Baojian. Experimental studies on interface friction characteristics of geogrids[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 948-952.

Catalog

    Article views (1215) PDF downloads (328) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return