• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Hanlong, DING Xuanming. Analytical solution of dynamic response of cast-in-situ concrete thin-wall pipe piles under transient concentrated load with low strain[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1611-1617.
Citation: LIU Hanlong, DING Xuanming. Analytical solution of dynamic response of cast-in-situ concrete thin-wall pipe piles under transient concentrated load with low strain[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1611-1617.

Analytical solution of dynamic response of cast-in-situ concrete thin-wall pipe piles under transient concentrated load with low strain

More Information
  • Published Date: November 14, 2007
  • The plane-section assumption was not congruous in low strain dynamic tests on pipe piles,so the propagation of stress wave couldn’t be expressed by 1D wave equation.The difference of dynamic response of large diameter thin-wall pipe pile along the radial direction was neglectable,and the dynamic response was assumed to be the same along the radial direction,as a result,only variables z,θ and t were contained in the wave equation.The analytical solution of the wave equation was obtained by separation of variables and the method of variation of the parameters.A case history was analyzed to discuss the dynamic response at the top of pile and the influence of plane-section assumption on effective depth,and the results were also compared with the results of 1D wave theory and 3D FEM.
  • Related Articles

    [1]ZHANG Jian, YANG Ligong, ZHANG Yuting, ZHAO Yue, LIU Yongjun, WU Wenhua. Deformation and pile-soil interaction mechanism of bank slopes reinforced by steel sheet piles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 202-206. DOI: 10.11779/CJGE2024S10030
    [2]XIAN Ganling, LAN Jingyan, PAN Danguang, WANG Yongzhi, LU Binrong. Influences and mechanisms of loads at pile top on dynamic interaction between soft soil-foundation with pile groups[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 67-72. DOI: 10.11779/CJGE2023S20003
    [3]WANG Zhongtao, LUO Guangyu, KONG Gangqiang, ZHANG Yu, FAN Zhixian, YANG Qing. Visual centrifugal model tests on capacity of anchor piles and displacement field around piles under oblique pull-out loads[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 189-195. DOI: 10.11779/CJGE20211441
    [4]WANG Nian-xiang, ZHOU Chun-er, DONG Hua-gang, LI Zhen, HE Yuan-tang. Centrifugal model tests on CFG pile-net composite foundation under super-large loads[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 87-91. DOI: 10.11779/CJGE2022S2019
    [5]LI Wei, ZHOU Chun-er, WU Jia-wu, DONG Hua-gang, REN Hong-lei. Centrifugal model tests and numerical simulations of pile-net composite foundation for heavy-load storage yard[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 71-75. DOI: 10.11779/CJGE2022S2016
    [6]LIU Si-hong, XUE Xiang-hua, FAN Ke-wei, XU Si-yuan. Earth pressure and deformation mode of a retaining wall constructed with soilbags[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2267-2273. DOI: 10.11779/CJGE201412015
    [7]CAO Zhao-hu, KONG Gang-qiang, LIU Han-long, ZHOU Hang. Model tests on 3-D soil deformation during pile penetration using transparent soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 395-400. DOI: 10.11779/CJGE201402018
    [8]ZHOU Feng, GUO Liang, LIU Zhuang-zhi, WANG Xu-dong, WANG Ji-guo. Model tests on end-bearing pile foundation by use of settlement adjustor[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 373-378.
    [9]LIU Kun, ZHAO Chun-feng. Model tests on bored piles under vertical load on different pile-tip soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 490.
    [10]WANG Wenbin, YANG Min. Elasto-plastic analysis for vertical pile based on extended compatibility of deformation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1442-1446.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return