• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHENG Gang, YAN Zhixiong, LEI Huayang, LEI Yang. Field observation and finite element numerical simulation analysis of effect on adjacent piles due to excavation[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 638-643.
Citation: ZHENG Gang, YAN Zhixiong, LEI Huayang, LEI Yang. Field observation and finite element numerical simulation analysis of effect on adjacent piles due to excavation[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 638-643.

Field observation and finite element numerical simulation analysis of effect on adjacent piles due to excavation

More Information
  • Published Date: May 14, 2007
  • The pile response to soil movements induced by adjacent excavation has attracted more and more attention of engineers.A field measurement was performed and measurement data shown the deep excavation could produce significant effect on adjacent piles.It was shown that the lateral displacement of DMM wall behind the contiguous retaining piles could be larger than that of contiguous retaining piles with large pile spacing.Great attention should be paid to this phenomenon.Based on the field observation,the influences of various parameters on pile response due to adjacent excavation were studied with three-dimensional finite element model taking into account the distances between diaphragm walls and piles,pile rigidity,vertical load on pile-head and constraint condition of pile-head.Some suggestions for the design and construction were given.
  • Related Articles

    [1]QIN Changbing, LI Yueyang, DAI Chenyu, SHI Yusha, ZHANG Wengang. Roof stability analysis of deeply-buried cavities based on nonlinear Baker criterion[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 296-304. DOI: 10.11779/CJGE20230662
    [2]BAI Xiaoxiao, ZHANG Huiyang, WANG Qiuzhe, ZHAO Kai, LU Qingrui, ZHUANG Haiyang, CHEN Guoxing. A nonlinear cyclic constitutive model for soils considering pore-water-soil-skeleton coupling effects and its numerical realization in 3D stress space[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2634-2640. DOI: 10.11779/CJGE20221092
    [3]CHEN Guo-xing, ZHU Xiang, ZHAO Ding-feng, LIU Jing-ru. Nonlinear seismic response characteristics of a coral island site[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 405-413. DOI: 10.11779/CJGE201903001
    [4]LIANG Jian-wen, HE Ying. A method of estimating general nonlinear dynamic characteristics of sites[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 436-444.
    [5]Self-memorization model of dynamic system for predicting nonlinear displacement of slopes[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10).
    [6]HE Yibin, XIA Dongzhou, YAN Yan, LIU Jianhua. Dynamic behaviors of SSDI system based on nonlinearity of soil in site[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 521-527.
    [7]ZHANG Wohua, WU Zhijun, XUE Xinhua. Chaotic analysis of nonlinear response of dams under earthquake[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1298-1303.
    [8]Xu Qiang, Huang Runqiu. Catastrophic Analysis of Nonlinear Response of Structure Under Earthquake[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(4): 25-29.
    [9]Zhang Chong wen, Zhao Jian ming, Zhang She rong, Sun Er chao. Dynamic  Nonlinear  Finite  Layer  element  Method  for  Pile-Soil  Interaction  Analysis[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(4): 4-13.
    [10]Wu Qingxi, Lu Tairen, Ye Jun. Static and Dynamic Reliability Analysis for Abutment Stability Against Sliding[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(3): 51-59.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return