• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
Centrifugal model tests on bearing capacity of uplift piles under deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3).
Citation: Centrifugal model tests on bearing capacity of uplift piles under deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3).

Centrifugal model tests on bearing capacity of uplift piles under deep excavation

More Information
  • Received Date: November 20, 2008
  • Revised Date: June 02, 2009
  • Published Date: March 14, 2010
  • Determination of the ultimate bearing capacity of an uplift pile under deep excavation has been paid much attention to by more and more geotechnical engineers. The theoretical analysis of this problem becomes a hot research topic recently. Unfortunately, due to the limitation of in-situ test conditions, it is almost impossible to obtain the ultimate uplift capacity of tension piles under deep excavation from field tests. Accordingly, centrifuge model tests on uplift piles under deep excavation are performed to examine the load transfer characters and the ultimate bearing capacity. The variation of displacement, friction resistance and internal axial force of the uplift piles before and after deep excavation is analyzed. And then the centrifugal model tests results are used to verify the rationality of the FEM and the limit equilibrium method. The calculated results by the two theoretical methods have good agreement with the results of centrifugal model tests.
  • Related Articles

    [1]WANG Rui, ZHOU Hong-wei, ZHUO Zhuang, XUE Dong-jie, YANG Shuai. Finite difference method for space-fractional seepage process in unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1759-1764. DOI: 10.11779/CJGE202009021
    [2]LIU Hua-xuan, LIU Dong-jia, LU Zhi-tang, TAO Jun, JIANG Jing. Numerical calculation of three-dimensional elastic wave equation of piles staggered grid finite difference using method with variable step lengths[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1754-1760. DOI: 10.11779/CJGE201409024
    [3]YAN Shu-wang, JIA Zhao-lin, GUO Bing-chuan, SUN Li-qiang. Consolidation characteristics of fillings by variable coefficients finite difference method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 496-500.
    [4]LIANG Fa-yun, LI Yan-chu, HUANG Mao-song. Simplified method for laterally loaded piles based on Pasternak double-parameter spring model for foundations[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 300-304.
    [5]ZHANG Ming, ZHAO You-ming, LIU Guo-nan, HU Rong-hua. Finite difference solution to equation for large-strain consolidation of double-layered vertical drain ground[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1666-1674.
    [6]SU Dong. Elasto-plastic p-y model and incremental finite element method for beams on nonlinear foundation[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1469-1474.
    [7]JIANG Jie, GU Qian-yan, HUANG Mao-song. Nonlinear analysis for settlement of vertically loaded single pile in dock pits after excavation[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 212-216.
    [8]ZHANG Hua, LU Yang. Numerical method for retaining structures based on coupled finite difference method and discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1402-1407.
    [9]WU Feng, SHI Beiling, ZHUO Yang. Nonlinear m method for piles under lateral load[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1398-1401.
    [10]ZHANG Jifa, XIE Xinyu, ZENG Guoxi. An analytical approach to one-dimensional finite strain non-linear consolidation by Lie group transformation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 639-642.

Catalog

    Article views (1011) PDF downloads (494) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return