• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Liangwei, HUANG Runqiu. Discussion on singularity in deducing lateral shear stress distribution along anchorage section theoretically based on Mindlin’s solution of displacement[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1112-1117.
Citation: JIANG Liangwei, HUANG Runqiu. Discussion on singularity in deducing lateral shear stress distribution along anchorage section theoretically based on Mindlin’s solution of displacement[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1112-1117.

Discussion on singularity in deducing lateral shear stress distribution along anchorage section theoretically based on Mindlin’s solution of displacement

More Information
  • Published Date: September 14, 2006
  • Most recent study methods for precise mechanical deducing the lateral shear stress distribution along anchorage section are theoretically based on the Mindlin’s solution of displacement in elastic theory.However,the results obtained with different methods are not only different,but also deviate from the results of practice projects.For exploring their theoretical origin,a general integral equation for deducing lateral shear stress was put forward.It was concluded that,the singularity of Mindlin’s solution,which led to an enormous displacement in force point,was difficult to clear up in numerical approaches.Although the singularity might be minimized to an appreciable extent by setting an arbitrary tiny space or by introducing convertion of the lateral stress,precise theoretical analysis with exact mechanical model could not be carried out yet.Another method,the analytical deduction of integral equation actually included three simplified conditions that would brought some distortion to prototypical mechanical model.These results only expressed a mathematical phenomenon came from these special simplified conditions.Furthermore,the reason of difference of shear stress between the analytical results and the practices at the start-element of anchorage section was discussed.According to the finite deformation mechanics,symmetrical tensor of shear stress was not applicable at that position.The shear stress at the start-element of anchorage section might not be zero.
  • Related Articles

    [1]QIN Changbing, LI Yueyang, DAI Chenyu, SHI Yusha, ZHANG Wengang. Roof stability analysis of deeply-buried cavities based on nonlinear Baker criterion[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 296-304. DOI: 10.11779/CJGE20230662
    [2]BAI Xiaoxiao, ZHANG Huiyang, WANG Qiuzhe, ZHAO Kai, LU Qingrui, ZHUANG Haiyang, CHEN Guoxing. A nonlinear cyclic constitutive model for soils considering pore-water-soil-skeleton coupling effects and its numerical realization in 3D stress space[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2634-2640. DOI: 10.11779/CJGE20221092
    [3]CHEN Guo-xing, ZHU Xiang, ZHAO Ding-feng, LIU Jing-ru. Nonlinear seismic response characteristics of a coral island site[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 405-413. DOI: 10.11779/CJGE201903001
    [4]LIANG Jian-wen, HE Ying. A method of estimating general nonlinear dynamic characteristics of sites[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 436-444.
    [5]Self-memorization model of dynamic system for predicting nonlinear displacement of slopes[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10).
    [6]HE Yibin, XIA Dongzhou, YAN Yan, LIU Jianhua. Dynamic behaviors of SSDI system based on nonlinearity of soil in site[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 521-527.
    [7]ZHANG Wohua, WU Zhijun, XUE Xinhua. Chaotic analysis of nonlinear response of dams under earthquake[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1298-1303.
    [8]Xu Qiang, Huang Runqiu. Catastrophic Analysis of Nonlinear Response of Structure Under Earthquake[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(4): 25-29.
    [9]Zhang Chong wen, Zhao Jian ming, Zhang She rong, Sun Er chao. Dynamic  Nonlinear  Finite  Layer  element  Method  for  Pile-Soil  Interaction  Analysis[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(4): 4-13.
    [10]Wu Qingxi, Lu Tairen, Ye Jun. Static and Dynamic Reliability Analysis for Abutment Stability Against Sliding[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(3): 51-59.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return