• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Chunling, HUANG Yi. Analytic solution of rectangular plates loaded with vertical force on an elastic half space[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1402-1407.
Citation: WANG Chunling, HUANG Yi. Analytic solution of rectangular plates loaded with vertical force on an elastic half space[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1402-1407.

Analytic solution of rectangular plates loaded with vertical force on an elastic half space

More Information
  • Published Date: December 14, 2005
  • The method of double Fourier transform was introduced for the analysis of an elastic half space loaded with vertical force,and an integral representation for displacements of an elastic half space was presented.The analytic solution of an elastic rectangular plate on an elastic half space was also given by combining the analytic solution of an elastic rectangular plate with four free edges.Some examples were analyzed and the results were compared with those from the literature which used other methods such as finite element method.The agreement was found to be satisfactory which proved the validity of the new method in solving the problem of a rectangular plate on an elastic half space with four free edges.This new method would be feasible in practical applications.
  • Related Articles

    [1]WANG Wei-guang, YAO Zhi-hua, LI Wan, ZHANG Jian-hua. Compression characteristics and particle crushing behavior of coral sand–quartz sand mixture under confined high pressure[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 6-11. DOI: 10.11779/CJGE2022S1002
    [2]SUN Yue, XIAO Yang, ZHOU Wei, LIU Han-long. Particle breakage and shape evolution of calcareous and quartz sands under compression[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1061-1068. DOI: 10.11779/CJGE202206010
    [3]DING Lin-nan, LI Guo-ying. SBG model for particle breakage of rockfills based on fractal gradation equation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 264-270. DOI: 10.11779/CJGE202202007
    [4]CHEN Zi-yu, LI Guo-ying, WEI Kuang-min, WU Li-qiang, ZHU Yu-meng. Ultimate state and probability of particle breakage for rockfill materials based on fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1192-1200. DOI: 10.11779/CJGE202107003
    [5]LIU Su, WANG Jian-feng. An approach for modelling particle breakage based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1706-1713. DOI: 10.11779/CJGE201809018
    [6]XU Yong-fu. Theory of shear strength of granular materials based on particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1171-1179. DOI: 10.11779/CJGE201807002
    [7]XU Yong-fu. Fractals in soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 16-20. DOI: 10.11779/CJGE2015S1004
    [8]CHI Shi-chun, WANG Feng, JIA Yu-feng, LI Shi-jie. Modeling particle breakage of rockfill materials based on single particle strength[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1780-1785. DOI: 10.11779/CJGE201510005
    [9]ZHANG Ji-ru, HU Yong, ZHANG Bi-wen, LIU Yuan-zhi. Fractal behavior of particle-size distribution during particle crushing of quartz sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 784-791. DOI: 10.11779/CJGE201505003
    [10]MA Ling, QI Ji-lin, YU Fan, YIN Zhen-yu. Particle crushing of frozen sand under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 544-550. DOI: 10.11779/CJGE201503020

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return