• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
DING Lin-nan, LI Guo-ying. SBG model for particle breakage of rockfills based on fractal gradation equation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 264-270. DOI: 10.11779/CJGE202202007
Citation: DING Lin-nan, LI Guo-ying. SBG model for particle breakage of rockfills based on fractal gradation equation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 264-270. DOI: 10.11779/CJGE202202007

SBG model for particle breakage of rockfills based on fractal gradation equation

More Information
  • Received Date: April 04, 2021
  • Available Online: September 22, 2022
  • Accurately predicting the particle breakage rate and the corresponding gradation changes of rockfills in shearing process is beneficial to revealing their characteristics such as strength, penetration and deformation under complex stress conditions. Based on the fractal gradation equation, a model for realizing the conversion of "stress strain-breakage index-gradation distribution (SBG)" is established. The breakage index BE is used to measure the particle breakage rate. The fractal gradation equation is deformed and integrated, and the mathematical conversion of particle breakage rate BE and fractal dimension D is derived, that is, the conversion of "breakage index-gradation distribution". The existing triaxial shear test data are analyzed, and a mathematical model that can quantitatively express the change of particle breakage rate with shear strain and average normal stress is proposed. The model has three parameters a, b and c. The parameter b is related to the critical state of soils and can be directly determined according to the critical shear strain. Two sets of different test data are fitted, and it is found that the predicted values by the model has a high degree of agreement with the test ones, and the conversion of "stress strain-breakage index" is realized. Combining the above two conversions, the gradation changes of rockfills under different shear strains and average normal stresses are successfully predicted.
  • [1]
    贾宇峰, 王丙申, 迟世春. 堆石料剪切过程中的颗粒破碎研究[J]. 岩土工程学报, 2015, 37(9): 1692–1697. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509024.htm

    (JIA Yu-feng, WANG Bing-shen, CHI Shi-chun. Particle breakage of rockfill during triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1692–1697. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509024.htm
    [2]
    TAPIAS M, ALONSO E E, GILI J. A particle model for rockfill behaviour[J]. Géotechnique, 2015, 65(12): 975–994. doi: 10.1680/jgeot.14.P.170
    [3]
    XIAO Y, LIU H L. Elastoplastic constitutive model for rockfill materials considering particle breakage[J]. International Journal of Geomechanics, 2017, 17(1): 04016041. doi: 10.1061/(ASCE)GM.1943-5622.0000681
    [4]
    XIAO Y, LIU H L, DING X M, et al. Influence of particle breakage on critical state line of rockfill material[J]. International Journal of Geomechanics, 2016, 16(1): 04015031. doi: 10.1061/(ASCE)GM.1943-5622.0000538
    [5]
    孔宪京, 刘京茂, 邹德高, 等. 紫坪铺面板坝堆石料颗粒破碎试验研究[J]. 岩土力学, 2014, 35(1): 35–40. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401004.htm

    KONG Xian-jing, LIU Jing-mao, ZOU De-gao, et al. Experimental study of particle breakage of Zipingpu rockfill material[J]. Rock and Soil Mechanics, 2014, 35(1): 35–40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401004.htm
    [6]
    MARSAL R J. Large scale testing of rockfill materials[J]. Journal of the Soil Mechanics and Foundations Division, 1967, 93(2): 27–43. doi: 10.1061/JSFEAQ.0000958
    [7]
    HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177–1192. doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)
    [8]
    EINAV I. Breakage mechanics-part I: theory[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(6): 1274–1297. doi: 10.1016/j.jmps.2006.11.003
    [9]
    郭万里, 朱俊高, 王青龙, 等. 基于级配方程的粗粒料级配演化预测模型[J]. 中南大学学报(自然科学版), 2018, 49(8): 2076–2082. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201808030.htm

    GUO Wan-li, ZHU Jun-gao, WANG Qing-long, et al. Mathematical model based on the gradation equation for predicting gradation evolution of coarse-grained soils[J]. Journal of Central South University (Science and Technology), 2018, 49(8): 2076–2082. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201808030.htm
    [10]
    陈生水, 傅中志, 韩华强, 等. 一个考虑颗粒破碎的堆石料弹塑性本构模型[J]. 岩土工程学报, 2011, 33(10): 1489–1495. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201110003.htm

    CHEN Sheng-shui, FU Zhong-zhi, HAN Hua-qiang, et al. An elastoplastic model for rockfill materials considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1489–1495. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201110003.htm
    [11]
    张凌凯, 王睿, 张建民, 等. 考虑颗粒破碎效应的堆石料静动力本构模型[J]. 岩土力学, 2019, 40(7): 2547–2554, 2562. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907008.htm

    ZHANG Ling-kai, WANG Rui, ZHANG Jian-min, et al. A static and dynamic constitutive model of rockfill material considering particle breakage[J]. Rock and Soil Mechanics, 2019, 40(7): 2547–2554, 2562. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907008.htm
    [12]
    张季如, 张弼文, 胡泳, 等. 粒状岩土材料颗粒破碎演化规律的模型预测研究[J]. 岩石力学与工程学报, 2016, 35(9): 1898–1905. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201609019.htm

    ZHANG Ji-ru, ZHANG Bi-wen, HU Yong, et al. Predicting the particle breakage of granular geomaterials[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(9): 1898–1905. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201609019.htm
    [13]
    童晨曦, 张升, 李希, 等. 基于Markov链的岩土材料颗粒破碎演化规律研究[J]. 岩土工程学报, 2015, 37(5): 870–877. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505017.htm

    TONG Chen-xi, ZHANG Sheng, LI Xi, et al. Evolution of geotechnical materials based on Markov chain considering particle crushing[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 870–877. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505017.htm
    [14]
    吴二鲁, 朱俊高, 黄维, 等. 三轴剪切过程中粗粒料颗粒破碎变化规律研究[J]. 岩土工程学报, 2020, 42(12): 2330–2335. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012027.htm

    WU Er-lu, ZHU Jun-gao, HUANG Wei, et al. Evolution law of particle breakage of coarse-grained soil during triaxial shearing[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2330–2335. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012027.htm
    [15]
    蔡正银, 李小梅, 关云飞, 等. 堆石料的颗粒破碎规律研究[J]. 岩土工程学报, 2016, 38(5): 923–929. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605019.htm

    CAI Zheng-yin, LI Xiao-mei, GUAN Yun-fei, et al. Particle breakage rules of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 923–929. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605019.htm
    [16]
    刘汉龙, 秦红玉, 高玉峰, 等. 堆石粗粒料颗粒破碎试验研究[J]. 岩土力学, 2005, 26(4): 562–566. doi: 10.3969/j.issn.1000-7598.2005.04.011

    LIU Han-long, QIN Hong-yu, GAO Yu-feng, et al. Experimental study on particle breakage of rockfill and coarse aggregates[J]. Rock and Soil Mechanics, 2005, 26(4): 562–566. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.04.011
    [17]
    高玉峰, 张兵, 刘伟, 等. 堆石料颗粒破碎特征的大型三轴试验研究[J]. 岩土力学, 2009, 30(5): 1237–1240, 1246. doi: 10.3969/j.issn.1000-7598.2009.05.007

    GAO Yu-feng, ZHANG Bing, LIU Wei, et al. Experimental study on particle breakage behavior of rockfills in large-scale triaxial tests[J]. Rock and Soil Mechanics, 2009, 30(5): 1237–1240, 1246. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.05.007
    [18]
    SALIM W, INDRARATNA B. A new elastoplastic constitutive model for coarse granular aggregates incorporating particle breakage[J]. Canadian Geotechnical Journal, 2004, 41(4): 657–671. doi: 10.1139/t04-025
    [19]
    JIA Y F, XU B, CHI S C, et al. Research on the particle breakage of rockfill materials during triaxial tests[J]. International Journal of Geomechanics, 2017, 17(10): 04017085. doi: 10.1061/(ASCE)GM.1943-5622.0000977
    [20]
    朱俊高, 郭万里, 王元龙, 等. 连续级配土的级配方程及其适用性研究[J]. 岩土工程学报, 2015, 37(10): 1931–1936. doi: 10.11779/CJGE201510023

    ZHU Jun-gao, GUO Wan-li, WANG Yuan-long, et al. Equation for soil gradation curve and its applicability[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1931–1936. (in Chinese) doi: 10.11779/CJGE201510023
    [21]
    郭万里, 朱俊高, 钱彬, 等. 粗粒土的颗粒破碎演化模型及其试验验证[J]. 岩土力学, 2019, 40(3): 1023–1029. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903022.htm

    GUO Wan-li, ZHU Jun-gao, QIAN Bin, et al. Particle breakage evolution model of coarse-grained soil and its experimental verification[J]. Rock and Soil Mechanics, 2019, 40(3): 1023–1029. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903022.htm
    [22]
    TALBOT A N, RICHART F E. The strength of concrete-its relation to the cement, aggregates and water[J]. Illinois Univ Eng Exp Sta Bulletin, 1923, 137: 1–118.
    [23]
    YANG Z Y, JUO J L. Interpretation of sieve analysis data using the box-counting method for gravelly cobbles[J]. Canadian Geotechnical Journal, 2001, 38(6): 1201–1212. doi: 10.1139/t01-052
    [24]
    XIAO Y, LIU H L, YANG G, et al. A constitutive model for the state-dependent behaviors of rockfill material considering particle breakage[J]. Science China Technological Sciences, 2014, 57(8): 1636–1646. doi: 10.1007/s11431-014-5601-6
    [25]
    GUDEHUS G. A comprehensive constitutive equation for granular materials[J]. Soils and Foundations, 1996, 36(1): 1–12. doi: 10.3208/sandf.36.1
    [26]
    贾宇峰, 迟世春, 杨峻, 等. 粗粒土的破碎耗能计算及影响因素[J]. 岩土力学, 2009, 30(7): 1960–1966. doi: 10.3969/j.issn.1000-7598.2009.07.015

    JIA Yu-feng, CHI Shi-chun, YANG Jun, et al. Measurement of breakage energy of coarse granular aggregates[J]. Rock and Soil Mechanics, 2009, 30(7): 1960–1966. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.07.015
    [27]
    郭万里. 粗粒土颗粒破碎演化规律及本构模型研究[D]. 南京: 河海大学, 2018.

    GUO Wan-li. Study on the Particle Breakage Evolution and Constitutive Model of Coarse-Grained Soils[D]. Nanjing: Hohai University, 2018. (in Chinese)
  • Related Articles

    [1]LÜ Xi-lin, PANG Bo, ZHU Chang-gen, ZHANG Jia-feng, XU Ke-feng, MA Quan. Physical model tests on load-sharing characteristics of piles and soils in pile- supported embankment[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 50-53. DOI: 10.11779/CJGE2022S2011
    [2]CHEN Jian-feng, GU Zi-ang, WANG Xin-tao, NIU Fu-jun, YE Guan-bao, FENG Shou-zhong. Behaviour of embankment on composite foundation with geosynthetic-encased stone columns under freeze-thaw condition[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1393-1400. DOI: 10.11779/CJGE202008003
    [3]CHEN Jian-feng, LI Liang-yong, XU Chao, FENG Shou-zhong. Centrifugal model tests on composite foundation reinforced by geosynthetic- encased stone columns under embankment loads[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 932-938. DOI: 10.11779/CJGE201805019
    [4]ZHANG Hao, SHI Ming-lei, GUO Yuan-cheng. Analytic model for load effects in geosynthetic-reinforced and pile-supported embankment based on segmented load transfer algorithm[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1630-1639. DOI: 10.11779/CJGE201609010
    [5]YANG Tao, WANG Gang-gang, YAN Ye-qiang, LI Guo-wei. Shape of soil arching and development of its effect in a piled embankment[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 731-735. DOI: 10.11779/CJGE201404018
    [6]FAN Li-bin, ZHANG Ding-wen, LIU Song-yu. Comparision of calculating methods for stress of soil arching effect of piled embankments[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 1155-1158.
    [7]RUI Rui, HUANG Cheng, XIA Yuan-you, HU Gang, XIA Xiao-long. Model tests on soil arching effects of piled embankments with sand fills[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2082-2089.
    [8]ZHANG Hao, SHI Ming-lei, LIU Wei-zheng, ZHAO Yu. Load effect of sparse capped-piles and soils in treating foundations under embankments[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1758-1765.
    [9]YU Jin, ZHOU Yi-Tao, BAO Sheng, CAI Yan-yan. Pile-soil stress ratio of deformable pile-supported and geosynthetics-reinforced embankments[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 705.
    [10]CAO Weiping, CHEN Renpeng, CHEN Yunmin. Experimental investigation on soil arching in piled reinforced embankments[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 436-441.
  • Cited by

    Periodical cited type(4)

    1. 刘亚如,陈旋,王朝雅. 建筑隔震技术研究综述. 江西建材. 2024(06): 9-10 .
    2. 尹志勇,孙海峰,景立平,董瑞,徐琨鹏. 基于玻璃珠-砂垫层的岩土隔震系统隔震效果影响因素分析. 地震工程与工程振动. 2022(05): 237-248 .
    3. 庄海洋,于旭,刘英. 土-桩-隔震结构非线性动力相互作用分析方法综述. 震灾防御技术. 2022(04): 632-642 .
    4. 孙海峰,尹志勇,景立平,董瑞,徐琨鹏. 输入地震动对砂垫层岩土隔震系统隔震效果的影响. 地震工程与工程振动. 2021(06): 222-230 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return