• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SONG Zhanping, LI Ning, CHEN Feixiong. Three dimensional nonlinear seismic stability analysis of abutment jointed rock mass of high arch dam[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(3): 361-366.
Citation: SONG Zhanping, LI Ning, CHEN Feixiong. Three dimensional nonlinear seismic stability analysis of abutment jointed rock mass of high arch dam[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(3): 361-366.

Three dimensional nonlinear seismic stability analysis of abutment jointed rock mass of high arch dam

More Information
  • Published Date: May 27, 2004
  • The aseismatic stability of abutment jointed rock mass is the key problem of high arch dam.With the application of the rigid body limit equilibrium method(RBLEM),the stresses in high arch dam are not considered when the seismic stability of abutment jointed rock mass is evaluated, so the safety coefficient calculated by RBLEM does not assure the safety of dam. According to the mechanical principle of intensity repertory the method of dynamic deformation safety coefficient of abutment rock mass is employed in order to take into consideration the safety of arch dam itself. In this paper, two different approaches,i.e.,dynamic deformation safety coefficient method and dynamic intensity safety coefficient method, are used to study the seismic stability of abutment of Xiaowan arch dam with the maximum height H=292 m. And the foundation rock of the abutment is considered as continuous medium with characteristics of nonlinear large deformation and cracking. The numerical results of Xiaowan high arch dam indicate the rationality and the feasibility of the proposed method.
  • Related Articles

    [1]QIN Changbing, LI Yueyang, DAI Chenyu, SHI Yusha, ZHANG Wengang. Roof stability analysis of deeply-buried cavities based on nonlinear Baker criterion[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 296-304. DOI: 10.11779/CJGE20230662
    [2]BAI Xiaoxiao, ZHANG Huiyang, WANG Qiuzhe, ZHAO Kai, LU Qingrui, ZHUANG Haiyang, CHEN Guoxing. A nonlinear cyclic constitutive model for soils considering pore-water-soil-skeleton coupling effects and its numerical realization in 3D stress space[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2634-2640. DOI: 10.11779/CJGE20221092
    [3]CHEN Guo-xing, ZHU Xiang, ZHAO Ding-feng, LIU Jing-ru. Nonlinear seismic response characteristics of a coral island site[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 405-413. DOI: 10.11779/CJGE201903001
    [4]LIANG Jian-wen, HE Ying. A method of estimating general nonlinear dynamic characteristics of sites[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 436-444.
    [5]Self-memorization model of dynamic system for predicting nonlinear displacement of slopes[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10).
    [6]HE Yibin, XIA Dongzhou, YAN Yan, LIU Jianhua. Dynamic behaviors of SSDI system based on nonlinearity of soil in site[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 521-527.
    [7]ZHANG Wohua, WU Zhijun, XUE Xinhua. Chaotic analysis of nonlinear response of dams under earthquake[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1298-1303.
    [8]Xu Qiang, Huang Runqiu. Catastrophic Analysis of Nonlinear Response of Structure Under Earthquake[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(4): 25-29.
    [9]Zhang Chong wen, Zhao Jian ming, Zhang She rong, Sun Er chao. Dynamic  Nonlinear  Finite  Layer  element  Method  for  Pile-Soil  Interaction  Analysis[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(4): 4-13.
    [10]Wu Qingxi, Lu Tairen, Ye Jun. Static and Dynamic Reliability Analysis for Abutment Stability Against Sliding[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(3): 51-59.

Catalog

    Article views (1150) PDF downloads (236) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return