• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
WANG Xiangqiu, YANG Linde, Gao Wenhua. 2-D nonlinear FEM analysis for underground openings locatedin the layered rock mass with softening joints[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(6): 729-732.
Citation: WANG Xiangqiu, YANG Linde, Gao Wenhua. 2-D nonlinear FEM analysis for underground openings locatedin the layered rock mass with softening joints[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(6): 729-732.

2-D nonlinear FEM analysis for underground openings locatedin the layered rock mass with softening joints

More Information
  • Published Date: November 21, 2002
  • A FEM model was established for the layered rock mass with softening joints. A method was put forward in which the layered rock mass and the soften joint were simulated by transversal isotropic material and a kind of rotational Goodman interface element was proposed to simulate the behavior of interface between the softening joint and the layered rock mass. The results of FEM were compared with the date measured in situ and it is shown that they matched with each other very well,so that this kind of analytical method is rational. 
  • Related Articles

    [1]DENG Zhiping, ZHONG Min, PAN Min, ZHENG Kehong, NIU Jingtai, JIANG Shuihua. Slope reliability analysis considering spatial variability of parameters based on efficient surrogate model[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 273-281. DOI: 10.11779/CJGE20221338
    [2]GU Xin, ZHANG Wengang, OU Qiang, WANG Lin, QIN Changbing. Reliability analysis of soil slope stability based on Chebyshev-Galerkin-KL expansion[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2472-2480. DOI: 10.11779/CJGE20220831
    [3]JIANG Shui-hua, LIU Xian, HUANG Fa-ming, HUANG Jin-song. Failure mechanism and reliability analysis of soil slopes under rainfall infiltration considering spatial variability of multiple soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 900-907. DOI: 10.11779/CJGE202005012
    [4]TAN Xiao-hui, DONG Xiao-le, FEI Suo-zhu, GONG Wen-ping, XIU Lin-tian, HOU Xiao-liang, MA Hai-chun. Reliability analysis method based on KL expansion and its application[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 808-816. DOI: 10.11779/CJGE202005002
    [5]QIN Xiao-hua, LIU Dong-sheng, SONG Qiang-hui, WU Yue, ZHANG Yu, YE Yong. Reliability analysis of bedrock laminar slope stability considering variability of saturated hydraulic conductivity of soil under heavy rainfall[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1065-1073. DOI: 10.11779/CJGE201706012
    [6]LIU Xi-kang, ZHANG Jian-hai, ZHAO Wen-guang. Stability analysis method for arbitrary slip block based on dynamic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 363-368.
    [7]WANG Yu-jie, XU Jia-cheng, WANG Xiao-gang, ZENG Qing-yi. Criteria for determining factor of safety of anchor against pull-out by using reliability analysis[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 303-308.
    [8]WU Kun-ming, WANG Jian-guo, TAN Xiao-hui. Determination of anchorage depth for rigid anti-slide piles based on reliability analysis[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 237-242.
    [9]TAN Xiaohui, WANG Jianguo, WU Linian, CUI Kerui, WU Daoxiang. Studies on accelerating convergence method in nonlinear stochastic finite element analysis of slope stability[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 1030-1034.
    [10]TAN Xiaohui, WANG Jianguo. Slope reliability analysis using elasto-plastic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 44-50.

Catalog

    Gao Wenhua

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return