• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
Field test insights on mechanical behavior of ground around a large deformed shield tunnel rehabilitated by grouting[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240680
Citation: Field test insights on mechanical behavior of ground around a large deformed shield tunnel rehabilitated by grouting[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240680

Field test insights on mechanical behavior of ground around a large deformed shield tunnel rehabilitated by grouting

More Information
  • Received Date: July 11, 2024
  • Available Online: December 18, 2024
  • At present, light-disturbance grouting technology has been widely applied in controlling and rehabilitating the transverse deformation of existing shield tunnels. However, there is a lack of corresponding research on the stratigraphic mechanical response during the light-disturbance grouting process. This paper relies on a case study of transverse deformation rehabilitation of shield tunnels treated with light-disturbance grouting in Shanghai. A lining ring was selected as a test ring at the site, with pressure sensors installed on both sides of the grouting hole to monitor the variations in earth pressure and pore water pressure. Based on this, the variations of the additional earth pressure, excess pore water pressure, and effective stress near the grouting hole during the grouting process were analyzed. Furthermore, the mechanical response of the ground at the test location induced by the grouting process of three adjacent grouting holes was further analyzed. On this basis, the slurry distribution coefficients in the existing grouting efficiency equations were corrected in conjunction with the additional earth pressure variations during grouting, and this provided a new idea for quantitatively characterizing the uncertainty of the grouting body in a two-dimensional plane and the design of grouting parameters in engineering practice.
  • Related Articles

    [1]HAN Lei, YE Guan-lin, WANG Jian-hua, YANG Guang-hui, ZHOU Song. Finite element analysis of impact of under-crossing of large shallow shield tunnel on riverbank[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 125-128. DOI: 10.11779/CJGE2015S1025
    [2]HAN Jin-bao, XIONG Ju-hua, SUN Qing, YANG Min. Multi-factor three-dimensional finite element analysis of effects of tunnel construction on adjacent pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 339-344.
    [3]XU Wen-qiang, YUAN Fan-fan, WEI Chang-fu, YANG Cao-shuai. Bearing capacity of suction tapered bucket foundations based on three-dimensional finite element numerical analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 485-490.
    [4]WANG Yuanzhan, XIAO Zhong, LI Yuanyin, XIE Shanwen. Finite element analysis for earth pressure on bucket foundation of breakwater[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 622-627.
    [5]HAN Bing, CAO Pinlu. Finite element analysis of interaction between soils and impact sampling bits[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1560-1563.
    [6]JIANG Xinliang, ZONG Jinhui. Three-dimensional finite element analysis of seepage fields in foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 564-568.
    [7]HUANG Yu, YASHIMA Atsushi, ZHANG Feng. Finite element analysis of pile-soil-structure dynamic interaction in liquefiable site[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 646-651.
    [8]XING Haofeng, GONG Xiaonan, YANG Xiaojun. Simplified analysis for consolidation of gravel-pile composite foundation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 521-524.
    [9]LU Xinzheng, SONG Erxiang, JI Lin, SUI Feng. 3-Dimensional FEA for the interaction between supporting structure of excavation and soil in a very deep pit[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(4): 488-491.
    [10]Yu Zehong, Zhang Qisen. Finite Element Analysis for Mechanism of Geonets-Soil Interaction[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 79-85.
  • Cited by

    Periodical cited type(2)

    1. 温志辉,郭树乾,魏建平,张铁岗,王建伟,张立博,任永婕. 低频振动激励煤体共振增渗实验系统研制及应用. 煤田地质与勘探. 2024(09): 31-40 .
    2. 王雷鸣,李硕,尹升华,成亮,张超,陈威,薛森淼. 深地砂岩铀矿溶浸开采体系孔裂-渗流透明表征与定向干预研究进展. 绿色矿山. 2024(04): 381-396 .

    Other cited types(2)

Catalog

    Article views (45) PDF downloads (4) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return