Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MA Weigong, WANG Lanmin, XU Shiyang, LI Dengke, CHAI Shaofeng. Shaking table tests on seismic liquefaction characteristics of soil surrounding tunnels in saturated loess stratum[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 171-176. DOI: 10.11779/CJGE2023S20021
Citation: MA Weigong, WANG Lanmin, XU Shiyang, LI Dengke, CHAI Shaofeng. Shaking table tests on seismic liquefaction characteristics of soil surrounding tunnels in saturated loess stratum[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 171-176. DOI: 10.11779/CJGE2023S20021

Shaking table tests on seismic liquefaction characteristics of soil surrounding tunnels in saturated loess stratum

More Information
  • Available Online: April 19, 2024
  • Based on the previous numerical and theoretical analyses, a series of shaking table tests with scale of 1∶20 for seismic liquefaction analysis of saturated surrounding loess are carried out to simulate the loess section of a tunnel under construction on the Lanzhou-Hezuo Railway in China. The results show that the soil–structure interaction significantly increases the liquefaction potential of the soil near the tunnel linings, and the surrounding soil will produce liquefaction before the soil of the same level when subjected to seismic loads. When the peak acceleration of seismic loads amax is minor (i. e., amax = 1.0 m/s2), the peaks of dynamic shear stress τd, max, dynamic pore water pressure Ud, max, and acceleration ap, max near the lining structure are larger than those far away from the lining at the same level height, and have obvious amplification effects. With the increase of amax to near the liquefaction stage of surrounding soil, the amplifying effects of dynamic pore water pressure Ud are obvious, while the amplifying effects of shear stress τd, max and acceleration ap, max decreases or disappear. In particular, the variation characteristics of the acceleration of the surrounding soil reveal the deficiency of the previous numerical simulations.
  • [1]
    WANG Lanmin. Loess Dynamics[M]. Beijing: Seismological Press, 2003. (in Chinese)
    [2]
    王兰民. 黄土地层大规模地震液化滑移的机理与风险评估[J]. 岩土工程学报, 2020, 42(1): 1-19. doi: 10.11779/CJGE202001001

    WANG Lanmin. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 1-19. (in Chinese) doi: 10.11779/CJGE202001001
    [3]
    李德武, 马为功. 二次衬砌施作时机的弹粘塑性有限元分析[J]. 现代隧道技术, 2012, 49(4): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201204004.htm

    LI Dewu, MA Weigong. Elasto-viscoplastic finite element analysis of the installation time of a secondary lining[J]. Modern Tunnelling Technology, 2012, 49(4): 6-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201204004.htm
    [4]
    GUAN Baoshu. Key Points of Tunnel Engineering Design[M]. Beijing: China Communications Press, 2003. (in Chinese)
    [5]
    许新桩. 陕北黄土地区铁路隧道基底病害机理分析及治理措施[J]. 公路交通科技(应用技术版), 2015, 11(9): 17-19. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201509008.htm

    XU Xinzhuang. Mechanism analysis and treatment measures of railway tunnel foundation disease in loess area of northern Shaanxi[J]. Journal of Highway and Transportation Research and Development, 2015, 11(9): 17-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201509008.htm
    [6]
    来弘鹏, 谭智鹏, 孙玉坤, 等. 富水黄土隧道施工过程围岩水分迁移规律研究[J]. 中国公路学报, 2023, 36(1): 150-161. doi: 10.3969/j.issn.1001-7372.2023.01.013

    LAI Hongpeng, TAN Zhipeng, SUN Yukun, et al. Study on law of water migration in surrounding rock during construction of water-rich loess tunnel[J]. China Journal of Highway and Transport, 2023, 36(1): 150-161. (in Chinese) doi: 10.3969/j.issn.1001-7372.2023.01.013
    [7]
    MA W G, WANG L M, WANG P, et al. The variation characteristics of dynamic shear stress reduction coefficient rd in loess tunnel stratum[J]. Soil Dynamics and Earthquake Engineering, 2023, 174: 108192. doi: 10.1016/j.soildyn.2023.108192
    [8]
    SEED H B, IDRISS I M. Simplified procedure for evaluating soil liquefaction potential[J]. Journal of the Soil Mechanics and Foundations Division, 1971, 97(9): 1249-1273. doi: 10.1061/JSFEAQ.0001662
    [9]
    ZHANG Kexu. Geotechnical Earthquake Engineering and Engineering Vibration[M]. Beijing: Science Press, 2016. (in Chinese)
    [10]
    DING X M, ZHANG Y L, WU Q, et al. Shaking table tests on the seismic responses of underground structures in coral sand[J]. Tunnelling and Underground Space Technology, 2021, 109: 103775.
  • Related Articles

    [1]WU Min, HUANG Yinghao, DONG Shijun, ZHANG Rongjun. Effects of polymer flocculant on dredged sediment by plate and frame filter press dewatering technology and its influence mechanism[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 470-476. DOI: 10.11779/CJGE20231212
    [2]Experimental study on consolidation of dredged sludge by grouting flocculation-vacuum preloading method considering the influence of soil salinization[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240047
    [3]LIU Lu-lu, CAI Guo-jun, LIU Song-yu. Correlation between thermal and mechanical properties of recycled polyester fiber and inorganic curing agent-improved silt[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2253-2262. DOI: 10.11779/CJGE202212012
    [4]CAI Yuan-qiang. Consolidation mechanism of vacuum preloading for dredged slurry and anti-clogging method for drains[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 201-225. DOI: 10.11779/CJGE202102001
    [5]ZHANG Rong-jun, DONG Chao-qiang, ZHENG Jun-jie, LU Zhan. Influences of flocculant and retarder on solidification efficiency of cement in treatment of dredged mud slurry[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1928-1935. DOI: 10.11779/CJGE201910018
    [6]SHEN Yang, FENG Zhao-yan, LIU Han-long, WANG Qin-cheng, LI An. Experimental study on effects of initial concentration on settling velocity characteristics of turbid surface of South China Sea coral mud[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 22-26. DOI: 10.11779/CJGE2018S2005
    [7]ZHENG Ai-rong, ZHU Hong-man. Experimental study on flocculation-accelerated deposition of dredger fill[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 145-148. DOI: 10.11779/CJGE2017S2036
    [8]WU Si-lin, ZHU Wei, MIN Fan-lu, ZHANG Chun-lei, WEI Dai-wei. Clogging mechanism and effect of cake permeability in soil-water separation using vacuum filtration[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1530-1537. DOI: 10.11779/CJGE201708022
    [9]DENG Dongsheng, HONG Zhenshun, LIU Chuanjun, DING Jianwen, HONG Pengyun. Large-scale model tests on dewater of dredged clay by use of ventilating vacuum method[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 250-253.
    [10]OU Xiaoduo, CAO Jing, ZHOU Dong, HUANG Shaokeng. Experimental study on chemical flocculating action of waste flush fluid[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 201-203.
  • Cited by

    Periodical cited type(4)

    1. 陈祎,刘明昊,赵智慧. 钻孔灌注桩废弃泥浆快速絮凝脱水技术与机理研究. 建筑施工. 2025(01): 6-11 .
    2. 孙万吉,陈建,梁志学,李朝阳,赵永享. 碱渣-矿渣-水玻璃对流态固化土的影响研究. 中国新技术新产品. 2024(19): 116-118+140 .
    3. 唐伟超,赵东平,王风,朱龙,汤青山,和琦. 砂卵土-泥岩复合地层土压平衡盾构渣土脱水试验. 现代隧道技术. 2024(S1): 684-693 .
    4. 张达志. 基桩施工产生的废弃泥浆絮凝脱水后的土体工程性质研究. 四川水力发电. 2024(S2): 29-34 .

    Other cited types(1)

Catalog

    Article views (100) PDF downloads (18) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return