| Citation: | MA Weigong, WANG Lanmin, XU Shiyang, LI Dengke, CHAI Shaofeng. Shaking table tests on seismic liquefaction characteristics of soil surrounding tunnels in saturated loess stratum[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 171-176. DOI: 10.11779/CJGE2023S20021 |
Based on the previous numerical and theoretical analyses, a series of shaking table tests with scale of 1∶20 for seismic liquefaction analysis of saturated surrounding loess are carried out to simulate the loess section of a tunnel under construction on the Lanzhou-Hezuo Railway in China. The results show that the soil–structure interaction significantly increases the liquefaction potential of the soil near the tunnel linings, and the surrounding soil will produce liquefaction before the soil of the same level when subjected to seismic loads. When the peak acceleration of seismic loads amax is minor (i. e., amax = 1.0 m/s2), the peaks of dynamic shear stress τd, max, dynamic pore water pressure Ud, max, and acceleration ap, max near the lining structure are larger than those far away from the lining at the same level height, and have obvious amplification effects. With the increase of amax to near the liquefaction stage of surrounding soil, the amplifying effects of dynamic pore water pressure Ud are obvious, while the amplifying effects of shear stress τd, max and acceleration ap, max decreases or disappear. In particular, the variation characteristics of the acceleration of the surrounding soil reveal the deficiency of the previous numerical simulations.
| [1] |
WANG Lanmin. Loess Dynamics[M]. Beijing: Seismological Press, 2003. (in Chinese)
|
| [2] |
王兰民. 黄土地层大规模地震液化滑移的机理与风险评估[J]. 岩土工程学报, 2020, 42(1): 1-19. doi: 10.11779/CJGE202001001
WANG Lanmin. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 1-19. (in Chinese) doi: 10.11779/CJGE202001001
|
| [3] |
李德武, 马为功. 二次衬砌施作时机的弹粘塑性有限元分析[J]. 现代隧道技术, 2012, 49(4): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201204004.htm
LI Dewu, MA Weigong. Elasto-viscoplastic finite element analysis of the installation time of a secondary lining[J]. Modern Tunnelling Technology, 2012, 49(4): 6-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201204004.htm
|
| [4] |
GUAN Baoshu. Key Points of Tunnel Engineering Design[M]. Beijing: China Communications Press, 2003. (in Chinese)
|
| [5] |
许新桩. 陕北黄土地区铁路隧道基底病害机理分析及治理措施[J]. 公路交通科技(应用技术版), 2015, 11(9): 17-19. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201509008.htm
XU Xinzhuang. Mechanism analysis and treatment measures of railway tunnel foundation disease in loess area of northern Shaanxi[J]. Journal of Highway and Transportation Research and Development, 2015, 11(9): 17-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201509008.htm
|
| [6] |
来弘鹏, 谭智鹏, 孙玉坤, 等. 富水黄土隧道施工过程围岩水分迁移规律研究[J]. 中国公路学报, 2023, 36(1): 150-161. doi: 10.3969/j.issn.1001-7372.2023.01.013
LAI Hongpeng, TAN Zhipeng, SUN Yukun, et al. Study on law of water migration in surrounding rock during construction of water-rich loess tunnel[J]. China Journal of Highway and Transport, 2023, 36(1): 150-161. (in Chinese) doi: 10.3969/j.issn.1001-7372.2023.01.013
|
| [7] |
MA W G, WANG L M, WANG P, et al. The variation characteristics of dynamic shear stress reduction coefficient rd in loess tunnel stratum[J]. Soil Dynamics and Earthquake Engineering, 2023, 174: 108192. doi: 10.1016/j.soildyn.2023.108192
|
| [8] |
SEED H B, IDRISS I M. Simplified procedure for evaluating soil liquefaction potential[J]. Journal of the Soil Mechanics and Foundations Division, 1971, 97(9): 1249-1273. doi: 10.1061/JSFEAQ.0001662
|
| [9] |
ZHANG Kexu. Geotechnical Earthquake Engineering and Engineering Vibration[M]. Beijing: Science Press, 2016. (in Chinese)
|
| [10] |
DING X M, ZHANG Y L, WU Q, et al. Shaking table tests on the seismic responses of underground structures in coral sand[J]. Tunnelling and Underground Space Technology, 2021, 109: 103775.
|
| [1] | LU Xinyu, JING Liping, QI Wenhao, XIA Feng. Shaking table tests on seismic dynamic response of pile groups under nuclear structures[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 91-97. DOI: 10.11779/CJGE2023S20008 |
| [2] | ZHUANG Hai-yang, ZHAO Chang, YU Xu, CHEN Guo-xing. Earthquake responses of piles-soil dynamic interaction system for base-isolated structure system based on shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 979-987. DOI: 10.11779/CJGE202206001 |
| [3] | JING Li-ping, WANG Gang, LI Jia-rui, SUN Yun-lun, ZHOU Zhong-yi, QI Wen-hao. Shaking table tests and numerical simulations of dynamic interaction of soil-pile-nuclear island system[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 163-172. DOI: 10.11779/CJGE202201016 |
| [4] | SHAO Shuai, SHAO Sheng-jun, CHEN Pan, ZHANG Bo. Experimental study on seismic subsidence characteristics of structural loess under cyclic torsional shear[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1167-1173. DOI: 10.11779/CJGE202006023 |
| [5] | XU Cheng-shun, DOU Peng-fei, DU Xiu-li, CHEN Su, LI Xia. Dynamic response analysis of liquefied site-pile group foundation-structure system —large-scale shaking table model test[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2173-2181. DOI: 10.11779/CJGE201912001 |
| [6] | DING Xuan-ming, WU Qi, LIU Han-long, CHEN Zhi-xiong, CHEN Yu-min, PENG Yu. Shaking table tests on dynamic response of coral sand foundation under buildings[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1408-1417. DOI: 10.11779/CJGE201908004 |
| [7] | YANG Bing, SUN Ming-xiang, WANG Run-ming, YANG Tao, FENG Jun, ZHOU De-pei. Shaking table tests on influences of water content of soils on dynamic failure modes and dynamic responses of slopes[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 759-767. DOI: 10.11779/CJGE201804021 |
| [8] | CAO Wen-ran, TIAN Wei, LI Chun. Development of 2-D laminar shear box and shaking table tests on model soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 249-253. DOI: 10.11779/CJGE2017S2060 |
| [9] | QU Hong-lüe, ZHANG Jian-jing, WANG Fu-jiang. Seismic response of prestressed anchor sheet pile wall from shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 313-320. |
| [10] | Development of laminar shear soil container for shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1). |