Citation: | LIU Songyu, WANG Zhengcheng, WU Kai, DU Guangyin, WANG Jianbin, CHEN Jiafu, JIANG Shungen. Experimental research on application of alkali residue-based lightweight soil subgrade filling[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2019-2029. DOI: 10.11779/CJGE20230955 |
[1] |
GOMES H I, MAYES W M, ROGERSON M, et al. Alkaline residues and the environment: a review of impacts, management practices and opportunities[J]. Journal of Cleaner Production, 2016, 112: 3571-3582. doi: 10.1016/j.jclepro.2015.09.111
|
[2] |
UÇAL G O, MAHYAR M, TOKYAY M. Hydration of alinite cement produced from soda waste sludge[J]. Construction and Building Materials, 2018, 164: 178-184. doi: 10.1016/j.conbuildmat.2017.12.196
|
[3] |
XU D, FU P, NI W, et al. Characterization and hydration mechanism of ammonia soda residue and Portland cement composite cementitious material[J]. Materials (Basel), 2021, 14(17): 4794. doi: 10.3390/ma14174794
|
[4] |
ZHANG Z, ZHU Y C, YANG T, et al. Conversion of local industrial wastes into greener cement through geopolymer technology: a case study of high-magnesium nickel slag[J]. Journal of Cleaner Production, 2017, 141: 463-471. doi: 10.1016/j.jclepro.2016.09.147
|
[5] |
孙树林, 郑青海, 唐俊, 等. 碱渣改良膨胀土室内试验研究[J]. 岩土力学, 2012, 33(6): 1608-1612. doi: 10.3969/j.issn.1000-7598.2012.06.002
SUN Shulin, ZHENG Qinghai, TANG Jun, et al. Experimental research on expansive soil improved by soda residue[J]. Rock and Soil Mechanics, 2012, 33(6): 1608-1612. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.06.002
|
[6] |
GUO L, AI S, TANG M, et al. Effect of alkali slag on cadmium bioavailability in the contaminated soil[J]. Environmental Science & Technology (China), 2011, 34(4): 100-103.
|
[7] |
HUANG M, LU F P, GUO Y W. Application research of caustic sludge, dredged sediment and coal ash in urban landscape[J]. Journal of Agro-Environment Science. 2006, 26(2): 748-753.
|
[8] |
MA J, YAN N, ZHANG M, et al. Mechanical characteristics of soda residue soil incorporating different admixture: reuse of soda residue[J]. Sustainability. 2020, 12(14): 5852.
|
[9] |
冀国栋, 杨春和, 刘伟, 等. 粉煤灰增强回填碱渣工程特性的试验研究[J]. 岩土力学, 2015, 36(8): 2169-2176, 2183.
JI Guodong, YANG Chunhe, LIU Wei, et al. An experimental study on the engineering properties of backfilled alkali wastes reinforced by fly ash[J]. Rock and Soil Mechanics, 2015, 36(8): 2169-2176, 2183. (in Chinese)
|
[10] |
BAI X, MA J, LIU J, et al. Field experimental investigation on filling the soda residue soil with liquid soda residue and liquid fly ash[J]. International Journal of Damage Mechanics. 2021, 30(4): 502-517.
|
[11] |
YU S, WU Z. Comparative study on desulfurization performance of several alkaline waste slags[J]. Environ Eng, 2002, 20: 42-44.
|
[12] |
RUI Y, LIANG Y, WANG Y. Wet simulation flue gas desulfurisation with soda-ash dregs absorbent[J]. Environ Sci Technol, 2006, 29: 21-25.
|
[13] |
YOUSSEF M B, LAVERGNE F, SAB K, et al. Upscaling the elastic stiffness of foam concrete as a three-phase composite material[J]. Cement and Concrete Research, 2018, 110: 13-23. doi: 10.1016/j.cemconres.2018.04.021
|
[14] |
YUANLIANG X, CHAO Z, CHUN C, et al. Effect of superabsorbent polymer on the foam-stability of foamed concrete[J]. Cement and Concrete Composites, 2022, 127: 104398. doi: 10.1016/j.cemconcomp.2021.104398
|
[15] |
GENG Y J, LI S C, HOU D S, et al. Fabrication of superhydrophobicity on foamed concrete surface by GO/silane coating[J]. Materials Letters, 2020, 265: 127423. doi: 10.1016/j.matlet.2020.127423
|
[16] |
RICCIOTTI L, OCCHICONE A, PETRILLO A, et al. Geopolymer-based hybrid foams: lightweight materials from a sustainable production process[J]. Journal of Cleaner Production, 2020, 250: 119588. doi: 10.1016/j.jclepro.2019.119588
|
[17] |
STOLZ J, BOLUK Y, BINDIGANAVILE V. Mechanical, thermal and acoustic properties of cellular alkali activated fly ash concrete[J]. Cement and Concrete Composites, 2018, 94: 24-32. doi: 10.1016/j.cemconcomp.2018.08.004
|
[18] |
气泡混合轻质土填筑工程技术规程: CJJ/T 177—2012[S]. 北京: 中国建筑工业出版社, 2012.
Technical Specification for Foamed Mixture Lightweight Soil Filling Engineering: CJJ/T 177—2012[S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)
|
[19] |
蒸压加气混凝土性能试验方法: GB/T 11969—2020[S]. 北京: 中国标准出版社, 2020.
Test Methods of Autoclaved Aerated Concrete: GB/T 11969—2020[S]. Beijing: Standards Press of China, 2020. (in Chinese)
|
[20] |
公路路基设计规范: JTG D30—2015[S]. 北京: 人民交通出版社, 2015.
Specifications for Design of Highway Subgrades: JTG D30—2015[S]. Beijing: China Communications Press, 2015. (in Chinese)
|
[21] |
SHI X N, HUANG J J, SU Q. Experimental and numerical analyses of lightweight foamed concrete as filler for widening embankment[J]. Construction and Building Materials, 2020, 250: 118897. doi: 10.1016/j.conbuildmat.2020.118897
|
[22] |
QUE Y, ZHANG H, ZHU T, et al. Amending foamed lightweight soil with tailings sand for embankment applications: physical properties, durability, and microstructure[J]. Construction and Building Materials, 2022, 350: 128912. doi: 10.1016/j.conbuildmat.2022.128912
|
[23] |
XU H Y, WANG Z J, SHAO Z M, et al. Experimental study on durability of fiber reinforced concrete: effect of cellulose fiber, polyvinyl alcohol fiber and polyolefin fiber[J]. Construction and Building Materials, 2021, 306: 124867. doi: 10.1016/j.conbuildmat.2021.124867
|
[24] |
WU J Q, LV C, PI R D, et al. The stability and durability of silt-based foamed concrete: a new type of road engineering material[J]. Construction and Building Materials, 2021, 304: 124674. doi: 10.1016/j.conbuildmat.2021.124674
|
[25] |
公路路基施工技术规范: JTG/T 3610—2019[S]. 北京: 人民交通出版社, 2019.
Technical Specifications for Construction of Highway Subgrades: JTG/T 3610—2019[S]. Beijing: China Communications Press, 2019. (in Chinese)
|
[26] |
公路路基路面现场测试规程: JTG 3450—2019[S]. 北京: 人民交通出版社, 2019.
Field Test Methods of Highway Subgrade and Pavement: JTG 3450—2019[S]. Beijing: China Communications Press, 2019. (in Chinese)
|
[27] |
公路沥青路面设计规范: JTG D50—2017[S]. 北京: 人民交通出版社, 2017.
Specifications for Design of Highway Asphalt Pavement: JTG D50—2017[S]. Beijing: China Communications Press, 2017. (in Chinese)
|
[1] | HAN Lei, YE Guan-lin, WANG Jian-hua, YANG Guang-hui, ZHOU Song. Finite element analysis of impact of under-crossing of large shallow shield tunnel on riverbank[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 125-128. DOI: 10.11779/CJGE2015S1025 |
[2] | HAN Jin-bao, XIONG Ju-hua, SUN Qing, YANG Min. Multi-factor three-dimensional finite element analysis of effects of tunnel construction on adjacent pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 339-344. |
[3] | XU Wen-qiang, YUAN Fan-fan, WEI Chang-fu, YANG Cao-shuai. Bearing capacity of suction tapered bucket foundations based on three-dimensional finite element numerical analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 485-490. |
[4] | WANG Yuanzhan, XIAO Zhong, LI Yuanyin, XIE Shanwen. Finite element analysis for earth pressure on bucket foundation of breakwater[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 622-627. |
[5] | HAN Bing, CAO Pinlu. Finite element analysis of interaction between soils and impact sampling bits[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1560-1563. |
[6] | JIANG Xinliang, ZONG Jinhui. Three-dimensional finite element analysis of seepage fields in foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 564-568. |
[7] | HUANG Yu, YASHIMA Atsushi, ZHANG Feng. Finite element analysis of pile-soil-structure dynamic interaction in liquefiable site[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 646-651. |
[8] | XING Haofeng, GONG Xiaonan, YANG Xiaojun. Simplified analysis for consolidation of gravel-pile composite foundation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 521-524. |
[9] | LU Xinzheng, SONG Erxiang, JI Lin, SUI Feng. 3-Dimensional FEA for the interaction between supporting structure of excavation and soil in a very deep pit[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(4): 488-491. |
[10] | Yu Zehong, Zhang Qisen. Finite Element Analysis for Mechanism of Geonets-Soil Interaction[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 79-85. |
1. |
温志辉,郭树乾,魏建平,张铁岗,王建伟,张立博,任永婕. 低频振动激励煤体共振增渗实验系统研制及应用. 煤田地质与勘探. 2024(09): 31-40 .
![]() | |
2. |
王雷鸣,李硕,尹升华,成亮,张超,陈威,薛森淼. 深地砂岩铀矿溶浸开采体系孔裂-渗流透明表征与定向干预研究进展. 绿色矿山. 2024(04): 381-396 .
![]() |