• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Minsi, YANG Yong, WANG Shuhong, ZHA Wenhua. Solutions and applications of maximum movable block in surrounding rock of tunnels[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2314-2322. DOI: 10.11779/CJGE20230826
Citation: ZHANG Minsi, YANG Yong, WANG Shuhong, ZHA Wenhua. Solutions and applications of maximum movable block in surrounding rock of tunnels[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2314-2322. DOI: 10.11779/CJGE20230826

Solutions and applications of maximum movable block in surrounding rock of tunnels

More Information
  • Received Date: August 27, 2023
  • Available Online: March 24, 2024
  • Due to the concealment of the discontinuities, the current exploration technology can not accurately obtain the location and mechanical parameters of all discontinuous, but can only obtain the occurrence information according to the exposure situation. The location of the discontinuities is a key factor for generating a block, so it is necessary to consider all the combinations of the discontinuities and excavation surface, and find the most unfavorable conditions to provide prediction and evaluation for engineering excavation. Based on the construction of joint pyramids, a projection translation method is proposed to solve the maximum movable region for cylindrical excavation surfaces. The dispersing-cutting-assembling method is used to reconstruct the curve surface block. Firstly, a set of radial virtual structures are set up to cut the pyramid block to realize the dispersion of the block. Secondly, based on the classification of face elements, a detailed surface-cutting-element algorithm is proposed. Finally, the cut elements are classified and combined to realize the reconstruction of the curve surface block. A 3D visualization program is developed based on the VC++ and OpenGL. The accuracy, applicability and robustness of the algorithm are verified by a numerical example and an engineering example. The maximum movable block program can be used to select the tunnel direction, providing reference for engineering design.
  • [1]
    GOODMAN R E, SHI G H. Block theory and its application to rock engineering[M]. Englewood Cliff: Prentice Hall, 1985.
    [2]
    PRIEST S D. Discontinuity Analysis for Rock Engineering[M]. London: Chapman & Hall, 1993.
    [3]
    DELPORT J L, MARTIN D H. A multiplier method for identifying keyblocks in excavations through jointed rock[J]. SIAM Journal on Algebraic and Discrete Methods, 1986, 7(2): 321-330. doi: 10.1137/0607035
    [4]
    LIN D, FAIRHURST C, STARFIELD A M. Geometrical identification of three-dimensional rock block systems using topological techniques[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1987, 24(6): 331-338.
    [5]
    YU Q, OHNISHI Y, XUE G, et al. A generalized procedure to identify three-dimensional rock blocks around complex excavations[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(3): 355-375. doi: 10.1002/nag.720
    [6]
    ZHANG Z X, WANG S F, HUANG X, et al. Application of block theory for evaluating face stability under disc cutters loading of TBM, case study of a water-conveyance tunnel project[J]. Tunnelling and Underground Space Technology, 2019, 90: 249-263. doi: 10.1016/j.tust.2019.05.002
    [7]
    ZHANG Y T, XIAO M, CHEN J T. A new methodology for block identification and its application in a large scale underground cavern complex[J]. Tunnelling and Underground Space Technology, 2010, 25(2): 168-180. doi: 10.1016/j.tust.2009.10.005
    [8]
    ZHENG Y H, XIA L, YU Q C. A method for identifying three-dimensional rock blocks formed by curved fractures[J]. Computers and Geotechnics, 2015, 65: 1-11. doi: 10.1016/j.compgeo.2014.11.005
    [9]
    张子新, 孙钧. 块体理论赤平解析法及其在硐室稳定分析中的应用[J]. 岩石力学与工程学报, 2002, 21(12): 1756-1760. doi: 10.3321/j.issn:1000-6915.2002.12.002

    ZHANG Zixin, SUN Jun. Stereoanalytic method for block theory and its application in stability analysis of a cave[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(12): 1756-1760. (in Chinese) doi: 10.3321/j.issn:1000-6915.2002.12.002
    [10]
    张奇华, 邬爱清, 石根华. 关键块体理论在百色水利枢纽地下厂房岩体稳定性分析中的应用[J]. 岩石力学与工程学报, 2004, 23(15): 2609-2614. doi: 10.3321/j.issn:1000-6915.2004.15.024

    ZHANG Qihua, WU Aiqing, SHI Genhua. Application of key block theory to analysis of rock stability for underground plant in Baise hydraulic project[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(15): 2609-2614. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.15.024
    [11]
    杨勇, 张敏思, 王述红, 等. 钓鱼台隧道复杂围岩设计施工过程关键块确定技术[J]. 现代隧道技术, 2017, 54(3): 105-111.

    YANG Yong, ZHANG Minsi, WANG Shuhong, et al. Key block determination in the progress of design and construction of the Diaoyutai tunnel in complex surrounding rock[J]. Modern Tunnelling Technology, 2017, 54(3): 105-111. (in Chinese)
    [12]
    ELMOUTTIE M, POROPAT G, KRÄHENBÜHL G. Polyhedral modelling of underground excavations[J]. Computers and Geotechnics, 2010, 37(4): 529-535. doi: 10.1016/j.compgeo.2010.02.009
    [13]
    LI M C, ZHANG Y, ZHOU S B, et al. Refined modeling and identification of complex rock blocks and block-groups based on an enhanced DFN model[J]. Tunnelling and Underground Space Technology, 2017, 62: 23-34. doi: 10.1016/j.tust.2016.11.002
    [14]
    LIU J, LI Z K, ZHANG Z Y. Stability analysis of block in the surrounding rock mass of a large underground excavation[J]. Tunnelling and Underground Space Technology, 2004, 19(1): 35-44. doi: 10.1016/S0886-7798(03)00084-1
  • Related Articles

    [1]FENG Huai-ping, MA De-liang, WANG Zhi-peng, CHANG Jian-mei. Measurement of resistivity of unsaturated soils using van der Pauw method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 690-696. DOI: 10.11779/CJGE201704014
    [2]LIU Song-yu, BIAN Han-liang, CAI Guo-jun, CHU Ya. Influences of water and oil two-phase on electrical resistivity of oil-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 170-177. DOI: 10.11779/CJGE201701016
    [3]LIU Ting-fa, NIE Yan-xia, HU Li-ming, ZHOU Qi-you, WEN Qing-bo. Model tests on moisture migration based on high-density electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 761-768. DOI: 10.11779/CJGE201604023
    [4]ZHAO Yan-ru, CHEN Xiang-sheng, HUANG Li-ping, ZHOU Zhong-hua, XIE Qiang. Experimental study on electrical resistivity of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2205-2216. DOI: 10.11779/CJGE201512010
    [5]GUO Xiu-jun, WU Shui-juan, MA Yuan-yuan. Quantitative investigation of landfill-leachate contaminated sand soil with electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2066-2071.
    [6]LIU Bin, NIE Li-chao, LI Shu-cai, LI Li-ping, SONG Jie, LIU Zheng-yu. Numerical forward and model tests of water inrush real-time monitoring in tunnels based on electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2026-2035.
    [7]Numerical modeling of direct current electrical resistivity with 3D FEM based on PCG algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1846-1855.
    [8]ZHA Fusheng, LIU Songyu, DU Yanjun, CUI Kerui. Quantitative research on microstructures of expansive soils during swelling using electrical resistivity measurements[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1832-1839.
    [9]HAN Lihua, LIU Songyu, DU Yanjun. New method for testing contaminated soil——electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1028-1032.
    [10]SUN Yue. Numerical analysis for three-dimensional resistivity model by using finite element/infinite element methods[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 733-737.
  • Cited by

    Periodical cited type(11)

    1. 吕庆强,蔡伟. 某库区移民场地条件变化后的砂土液化研究. 地质灾害与环境保护. 2024(01): 70-73 .
    2. 李雨润,范浩然,闫志晓,辛晓梅. 干砂与饱和砂土场地直斜群桩横向动力响应特性对比研究. 自然灾害学报. 2024(03): 202-216 .
    3. 杨洋,魏怡童. 基于分类树的液化概率等级评估新方法. 岩土力学. 2024(07): 2175-2186+2194 .
    4. 李萍萍,赵少飞,鲍俊文,刘子源. 基于标贯试验的含细粒砂土液化概率判别新模型. 防灾减灾工程学报. 2024(05): 1133-1139 .
    5. 袁近远,苏安双,陈龙伟,许成顺,王淼,袁晓铭,张思宇. 基于剪切波速的砾性土液化概率计算的中国方法. 岩土力学. 2024(11): 3378-3387+3415 .
    6. 袁近远,王兰民,汪云龙,袁晓铭. 不同设防水准下场地液化震害风险差异性研究. 岩石力学与工程学报. 2023(01): 246-260 .
    7. 王维铭,陈龙伟,郭婷婷,汪云龙,凌贤长. 基于中国砂土液化数据库的标准贯入试验液化判别方法研究. 岩土力学. 2023(01): 279-288 .
    8. 郝少雷,张兵,徐世光,李岳峰,陈梦瑞,邓立雄,郭薇. 基于SPT-APD-DDA的砂土液化评价方法研究. 地震工程学报. 2023(04): 877-886 .
    9. 李原,王睿,张建民. 地下水位上升对北京土层地震液化的影响. 土木工程学报. 2023(S2): 95-103 .
    10. 赵志江. 泵站基础液化判别方法分析. 水利技术监督. 2023(12): 217-221 .
    11. 邱香,袁晓铭,李鑫洋,汪云龙,李兆焱,张思宇. 不同地区数据下CPT液化判别公式的差异性与互用可行性研究. 土木工程学报. 2022(S1): 241-249 .

    Other cited types(6)

Catalog

    Article views (296) PDF downloads (72) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return