• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MENG Chuiqian, WANG Le, ZHANG Chunhui, WANG Zhichao, TIAN Yinghui. In-place stability of submarine pipelines based on water-soil-pipeline coupling analysis platform[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 618-626. DOI: 10.11779/CJGE20230368
Citation: MENG Chuiqian, WANG Le, ZHANG Chunhui, WANG Zhichao, TIAN Yinghui. In-place stability of submarine pipelines based on water-soil-pipeline coupling analysis platform[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 618-626. DOI: 10.11779/CJGE20230368

In-place stability of submarine pipelines based on water-soil-pipeline coupling analysis platform

More Information
  • Received Date: April 26, 2023
  • The submarine pipeline is a key component of deep-sea oil and gas engineering, and the in-place stability of pipelines is affected by ocean waves and hydrodynamic loads, soil resistance and pipeline characteristics. The existing analytical methods are difficult to accurately evaluate the in-place stability of submarine pipelines under water-soil-pipe coupling. For this reason, a pipeline-water interaction analysis program and a pipeline-soil interaction analysis program are established using the FORTRAN programming language firstly. The former uses the Fourier analysis to calculate the hydrodynamic loads acting on the pipelines, and corrects the loads based on displacement change of the pipelines in real time. The latter is based on the existing pipeline-soil interaction model to calculate the horizontal soil resistance of the pipelines during movement. Subsequently, the above programs are coupled based on the DLOAD and UEL subroutines in the finite element analysis software ABAQUS to ultimately form a water-soil-pipeline coupling analysis platform for analyzing the in-place stability of the submarine pipelines. The effects of sea conditions, soil properties and pipeline shape parameters on the in-place stability of the pipelines are comprehensively considered in the platform, providing a reference for the in-place stability analysis of the submarine pipelines in practical projects.
  • [1]
    RANDOLPH M F, WHITE D. Pipeline embedment in deep water: processes and quantitative assessment[C]//Offshore Technology Conference, Houston, Texas, 2008: 19128.
    [2]
    MORISON J R, JOHNSON J W, SCHAAF S A. The force exerted by surface waves on piles[J]. Journal of Petroleum Technology, 1950, 2(5): 149-154. doi: 10.2118/950149-G
    [3]
    JACOBSEN V, BRYNDUM M B, FREDSØE J. Determination of flow kinematics close to marine'Pipelines and their use in stability calculations[C]// Offshore Technology Conference, Houston, Texas, 1984.
    [4]
    LAMBRAKOS K F, CHAO J C, BECKMANN H, et al. Wake model of hydrodynamic forces on pipelines[J]. Ocean Engineering, 1987, 14(2): 117-136. doi: 10.1016/0029-8018(87)90073-4
    [5]
    FYFE A J, MYRHAUG D, REED K. Hydrodynamic forces on seabed pipelines: large-scale laboratory experiments[C]// Offshore Technology Conference, Houston, Texas, 1987: 123-131.
    [6]
    HOBBS H. Criteria for the design and construction of submarine pipelines[J]. Pipes and Pipelines International, 1966: 24-27.
    [7]
    LYONS C G. Soil resistance to lateral sliding of marine pipelines[C]// Offshore Technology Conference, Houston, Texas, 1973: 1876.
    [8]
    WAGNER D A, MURFF J D, BRENNODDEN H A, et al. Pipe-soil interaction model[C]// Offshore Technology Conference. Houston, Texas, 1987: 5504.
    [9]
    VERLEY R L P, SOTBERG T A. Soil resistance model for pipelines placed on sandy soils[C]// Pipeline Technology, Proceedings of the 11th International Conference on Offshore Mechanics and Arctic Engineering, Alberta, Canada, 1973: 1876.
    [10]
    VERLEY R L P, LUND K M. A soil resistance model for pipelines placed on clay soils[C]// Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Copenhagen, 1995: 225-232.
    [11]
    BRUTON D, WHITE D, CHEUK C, et al. Pipe/soil interaction behavior during lateral buckling, including large-amplitude cyclic displacement tests by the safebuck JIP[C]// Offshore Technology Conference, Houston, Texas, 2006: 568-577.
    [12]
    CHEUK C Y, WHITE D J, BOLTON M D. Large-scale modelling of soil-pipe interaction during large amplitude cyclic movements of partially embedded pipelines[J]. Canadian Geotechnical Journal, 2007, 44(8): 977-996. doi: 10.1139/T07-037
    [13]
    TIAN Y H, CASSIDY M J. Pipe-soil interaction model incorporating large lateral displacements in calcareous sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(3): 279-287. doi: 10.1061/(ASCE)GT.1943-5606.0000428
    [14]
    WANG Y F, LIU R, WANG L. Experimental and upper-bound analysis of lateral soil resistance for shallow-embedded pipeline in Bohai sand[J]. Journal of Pipeline Systems Engineering and Practice, 2018, 9(4): 4018014. doi: 10.1061/(ASCE)PS.1949-1204.0000332
    [15]
    WANG L, DING H Y, PENG B Y, et al. Upper-bound analysis of maximal lateral resistance for pipelines without embedment in sand[J]. Journal of Pipeline Systems Engineering and Practice, 2017, 8(3): 04017006. doi: 10.1061/(ASCE)PS.1949-1204.0000263
    [16]
    WANG L, WANG Y F, PENG B Y, et al. Physical model tests of lateral pipe-soil interaction including the pipe trajectory in sand[J]. European Journal of Environmental and Civil Engineering, 2022, 26(5): 1962-1976. doi: 10.1080/19648189.2020.1742795
    [17]
    WANG L, LIU R. The effect of a berm on the lateral resistance of a shallow pipeline buried in sand[J]. Ocean Engineering, 2016, 121: 13-23. doi: 10.1016/j.oceaneng.2016.05.010
    [18]
    YOUSSEF B S, TIAN Y H, CASSIDY M J. Centrifuge modelling of an on-bottom pipeline under equivalent wave and current loading[J]. Applied Ocean Research, 2013, 40: 14-25. doi: 10.1016/j.apor.2012.10.009
    [19]
    高福平. 海底管道失稳的流固土耦合机理及预测[C]// 第十四届全国水动力学学术会议暨第二十八届全国水动力学研讨会, 长春, 2017.

    GAO Fuping. Flow-pipe-soil couplingmechanism and theroretical prediction for submarine pipelineinstability on the seabed[C]// The 14th National Academic Conference on Hydrodynamics and the 28th National Seminar on Hydrodynamics, Changchun, 2017. (in Chinese)
    [20]
    徐万海, 艾化楠, 贾昆, 等. 海底多跨管道流-固-土多场耦合试验研究[J]. 振动与冲击, 2023, 42(5): 1-6.

    XU Wanhai, AI Huanan, JIA Kun, et al. Test study on fluid-solid-soil multi-field coupling of multi-span submarine pipeline[J]. Journal of Vibration and Shock, 2023, 42(5): 1-6. (in Chinese)
    [21]
    赵瑞, 贾昆, 闫术明, 等. 考虑不同管土作用模型的海底多跨管道动力特性[J]. 船舶工程, 2021, 43(3): 136-141.

    ZHAO Rui, JIA Kun, YAN Shuming, et al. Dynamic characteristics of submarine multi-span pipelines considering different pipe-soil interaction models[J]. Ship Engineering, 2021, 43(3): 136-141. (in Chinese)
    [22]
    BASSEM S Y. The Integrated Stability Analysis of Offshore Pipelines[D]. Perth: School of Civil and Resource Engineering Centre for Offshore Foundation Systems, The University of Western Australia, 2011.
    [23]
    BRYNDUM M B, JACOBSEN V B, BRAND L P. Hydrodynamic forces from wave and current loads on marine pipelines[C]// Offshore Technology Conference, Houston, Texas, 1983.
    [24]
    BORGMAN, L E. Directional spectra for design use[C]// Offshore Technology Conference, Houston, Texas, 1969.
    [25]
    CASSIDY M J, HOULSBY G T, EATOCK TAYLOR R. Probabilistic models applicable to the short-term extreme response analysis of jack-up platforms[J]. Journal of Offshore Mechanics and Arctic Engineering, 2003, 125(4): 249-263. doi: 10.1115/1.1600470
    [26]
    BRENNODDEN H, LIENG J T, SOTBERG T, et al. An energy-based pipe-soil interaction model[C]// Offshore Technology Conference, Houston, Texas, 1989.
  • Related Articles

    [1]FENG Huai-ping, MA De-liang, WANG Zhi-peng, CHANG Jian-mei. Measurement of resistivity of unsaturated soils using van der Pauw method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 690-696. DOI: 10.11779/CJGE201704014
    [2]LIU Song-yu, BIAN Han-liang, CAI Guo-jun, CHU Ya. Influences of water and oil two-phase on electrical resistivity of oil-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 170-177. DOI: 10.11779/CJGE201701016
    [3]LIU Ting-fa, NIE Yan-xia, HU Li-ming, ZHOU Qi-you, WEN Qing-bo. Model tests on moisture migration based on high-density electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 761-768. DOI: 10.11779/CJGE201604023
    [4]ZHAO Yan-ru, CHEN Xiang-sheng, HUANG Li-ping, ZHOU Zhong-hua, XIE Qiang. Experimental study on electrical resistivity of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2205-2216. DOI: 10.11779/CJGE201512010
    [5]GUO Xiu-jun, WU Shui-juan, MA Yuan-yuan. Quantitative investigation of landfill-leachate contaminated sand soil with electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2066-2071.
    [6]LIU Bin, NIE Li-chao, LI Shu-cai, LI Li-ping, SONG Jie, LIU Zheng-yu. Numerical forward and model tests of water inrush real-time monitoring in tunnels based on electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2026-2035.
    [7]Numerical modeling of direct current electrical resistivity with 3D FEM based on PCG algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1846-1855.
    [8]ZHA Fusheng, LIU Songyu, DU Yanjun, CUI Kerui. Quantitative research on microstructures of expansive soils during swelling using electrical resistivity measurements[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1832-1839.
    [9]HAN Lihua, LIU Songyu, DU Yanjun. New method for testing contaminated soil——electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1028-1032.
    [10]SUN Yue. Numerical analysis for three-dimensional resistivity model by using finite element/infinite element methods[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 733-737.
  • Cited by

    Periodical cited type(11)

    1. 吕庆强,蔡伟. 某库区移民场地条件变化后的砂土液化研究. 地质灾害与环境保护. 2024(01): 70-73 .
    2. 李雨润,范浩然,闫志晓,辛晓梅. 干砂与饱和砂土场地直斜群桩横向动力响应特性对比研究. 自然灾害学报. 2024(03): 202-216 .
    3. 杨洋,魏怡童. 基于分类树的液化概率等级评估新方法. 岩土力学. 2024(07): 2175-2186+2194 .
    4. 李萍萍,赵少飞,鲍俊文,刘子源. 基于标贯试验的含细粒砂土液化概率判别新模型. 防灾减灾工程学报. 2024(05): 1133-1139 .
    5. 袁近远,苏安双,陈龙伟,许成顺,王淼,袁晓铭,张思宇. 基于剪切波速的砾性土液化概率计算的中国方法. 岩土力学. 2024(11): 3378-3387+3415 .
    6. 袁近远,王兰民,汪云龙,袁晓铭. 不同设防水准下场地液化震害风险差异性研究. 岩石力学与工程学报. 2023(01): 246-260 .
    7. 王维铭,陈龙伟,郭婷婷,汪云龙,凌贤长. 基于中国砂土液化数据库的标准贯入试验液化判别方法研究. 岩土力学. 2023(01): 279-288 .
    8. 郝少雷,张兵,徐世光,李岳峰,陈梦瑞,邓立雄,郭薇. 基于SPT-APD-DDA的砂土液化评价方法研究. 地震工程学报. 2023(04): 877-886 .
    9. 李原,王睿,张建民. 地下水位上升对北京土层地震液化的影响. 土木工程学报. 2023(S2): 95-103 .
    10. 赵志江. 泵站基础液化判别方法分析. 水利技术监督. 2023(12): 217-221 .
    11. 邱香,袁晓铭,李鑫洋,汪云龙,李兆焱,张思宇. 不同地区数据下CPT液化判别公式的差异性与互用可行性研究. 土木工程学报. 2022(S1): 241-249 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return