Citation: | MENG Chuiqian, WANG Le, ZHANG Chunhui, WANG Zhichao, TIAN Yinghui. In-place stability of submarine pipelines based on water-soil-pipeline coupling analysis platform[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 618-626. DOI: 10.11779/CJGE20230368 |
[1] |
RANDOLPH M F, WHITE D. Pipeline embedment in deep water: processes and quantitative assessment[C]//Offshore Technology Conference, Houston, Texas, 2008: 19128.
|
[2] |
MORISON J R, JOHNSON J W, SCHAAF S A. The force exerted by surface waves on piles[J]. Journal of Petroleum Technology, 1950, 2(5): 149-154. doi: 10.2118/950149-G
|
[3] |
JACOBSEN V, BRYNDUM M B, FREDSØE J. Determination of flow kinematics close to marine'Pipelines and their use in stability calculations[C]// Offshore Technology Conference, Houston, Texas, 1984.
|
[4] |
LAMBRAKOS K F, CHAO J C, BECKMANN H, et al. Wake model of hydrodynamic forces on pipelines[J]. Ocean Engineering, 1987, 14(2): 117-136. doi: 10.1016/0029-8018(87)90073-4
|
[5] |
FYFE A J, MYRHAUG D, REED K. Hydrodynamic forces on seabed pipelines: large-scale laboratory experiments[C]// Offshore Technology Conference, Houston, Texas, 1987: 123-131.
|
[6] |
HOBBS H. Criteria for the design and construction of submarine pipelines[J]. Pipes and Pipelines International, 1966: 24-27.
|
[7] |
LYONS C G. Soil resistance to lateral sliding of marine pipelines[C]// Offshore Technology Conference, Houston, Texas, 1973: 1876.
|
[8] |
WAGNER D A, MURFF J D, BRENNODDEN H A, et al. Pipe-soil interaction model[C]// Offshore Technology Conference. Houston, Texas, 1987: 5504.
|
[9] |
VERLEY R L P, SOTBERG T A. Soil resistance model for pipelines placed on sandy soils[C]// Pipeline Technology, Proceedings of the 11th International Conference on Offshore Mechanics and Arctic Engineering, Alberta, Canada, 1973: 1876.
|
[10] |
VERLEY R L P, LUND K M. A soil resistance model for pipelines placed on clay soils[C]// Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Copenhagen, 1995: 225-232.
|
[11] |
BRUTON D, WHITE D, CHEUK C, et al. Pipe/soil interaction behavior during lateral buckling, including large-amplitude cyclic displacement tests by the safebuck JIP[C]// Offshore Technology Conference, Houston, Texas, 2006: 568-577.
|
[12] |
CHEUK C Y, WHITE D J, BOLTON M D. Large-scale modelling of soil-pipe interaction during large amplitude cyclic movements of partially embedded pipelines[J]. Canadian Geotechnical Journal, 2007, 44(8): 977-996. doi: 10.1139/T07-037
|
[13] |
TIAN Y H, CASSIDY M J. Pipe-soil interaction model incorporating large lateral displacements in calcareous sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(3): 279-287. doi: 10.1061/(ASCE)GT.1943-5606.0000428
|
[14] |
WANG Y F, LIU R, WANG L. Experimental and upper-bound analysis of lateral soil resistance for shallow-embedded pipeline in Bohai sand[J]. Journal of Pipeline Systems Engineering and Practice, 2018, 9(4): 4018014. doi: 10.1061/(ASCE)PS.1949-1204.0000332
|
[15] |
WANG L, DING H Y, PENG B Y, et al. Upper-bound analysis of maximal lateral resistance for pipelines without embedment in sand[J]. Journal of Pipeline Systems Engineering and Practice, 2017, 8(3): 04017006. doi: 10.1061/(ASCE)PS.1949-1204.0000263
|
[16] |
WANG L, WANG Y F, PENG B Y, et al. Physical model tests of lateral pipe-soil interaction including the pipe trajectory in sand[J]. European Journal of Environmental and Civil Engineering, 2022, 26(5): 1962-1976. doi: 10.1080/19648189.2020.1742795
|
[17] |
WANG L, LIU R. The effect of a berm on the lateral resistance of a shallow pipeline buried in sand[J]. Ocean Engineering, 2016, 121: 13-23. doi: 10.1016/j.oceaneng.2016.05.010
|
[18] |
YOUSSEF B S, TIAN Y H, CASSIDY M J. Centrifuge modelling of an on-bottom pipeline under equivalent wave and current loading[J]. Applied Ocean Research, 2013, 40: 14-25. doi: 10.1016/j.apor.2012.10.009
|
[19] |
高福平. 海底管道失稳的流固土耦合机理及预测[C]// 第十四届全国水动力学学术会议暨第二十八届全国水动力学研讨会, 长春, 2017.
GAO Fuping. Flow-pipe-soil couplingmechanism and theroretical prediction for submarine pipelineinstability on the seabed[C]// The 14th National Academic Conference on Hydrodynamics and the 28th National Seminar on Hydrodynamics, Changchun, 2017. (in Chinese)
|
[20] |
徐万海, 艾化楠, 贾昆, 等. 海底多跨管道流-固-土多场耦合试验研究[J]. 振动与冲击, 2023, 42(5): 1-6.
XU Wanhai, AI Huanan, JIA Kun, et al. Test study on fluid-solid-soil multi-field coupling of multi-span submarine pipeline[J]. Journal of Vibration and Shock, 2023, 42(5): 1-6. (in Chinese)
|
[21] |
赵瑞, 贾昆, 闫术明, 等. 考虑不同管土作用模型的海底多跨管道动力特性[J]. 船舶工程, 2021, 43(3): 136-141.
ZHAO Rui, JIA Kun, YAN Shuming, et al. Dynamic characteristics of submarine multi-span pipelines considering different pipe-soil interaction models[J]. Ship Engineering, 2021, 43(3): 136-141. (in Chinese)
|
[22] |
BASSEM S Y. The Integrated Stability Analysis of Offshore Pipelines[D]. Perth: School of Civil and Resource Engineering Centre for Offshore Foundation Systems, The University of Western Australia, 2011.
|
[23] |
BRYNDUM M B, JACOBSEN V B, BRAND L P. Hydrodynamic forces from wave and current loads on marine pipelines[C]// Offshore Technology Conference, Houston, Texas, 1983.
|
[24] |
BORGMAN, L E. Directional spectra for design use[C]// Offshore Technology Conference, Houston, Texas, 1969.
|
[25] |
CASSIDY M J, HOULSBY G T, EATOCK TAYLOR R. Probabilistic models applicable to the short-term extreme response analysis of jack-up platforms[J]. Journal of Offshore Mechanics and Arctic Engineering, 2003, 125(4): 249-263. doi: 10.1115/1.1600470
|
[26] |
BRENNODDEN H, LIENG J T, SOTBERG T, et al. An energy-based pipe-soil interaction model[C]// Offshore Technology Conference, Houston, Texas, 1989.
|
[1] | HAN Lei, YE Guan-lin, WANG Jian-hua, YANG Guang-hui, ZHOU Song. Finite element analysis of impact of under-crossing of large shallow shield tunnel on riverbank[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 125-128. DOI: 10.11779/CJGE2015S1025 |
[2] | HAN Jin-bao, XIONG Ju-hua, SUN Qing, YANG Min. Multi-factor three-dimensional finite element analysis of effects of tunnel construction on adjacent pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 339-344. |
[3] | XU Wen-qiang, YUAN Fan-fan, WEI Chang-fu, YANG Cao-shuai. Bearing capacity of suction tapered bucket foundations based on three-dimensional finite element numerical analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 485-490. |
[4] | WANG Yuanzhan, XIAO Zhong, LI Yuanyin, XIE Shanwen. Finite element analysis for earth pressure on bucket foundation of breakwater[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 622-627. |
[5] | HAN Bing, CAO Pinlu. Finite element analysis of interaction between soils and impact sampling bits[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1560-1563. |
[6] | JIANG Xinliang, ZONG Jinhui. Three-dimensional finite element analysis of seepage fields in foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 564-568. |
[7] | HUANG Yu, YASHIMA Atsushi, ZHANG Feng. Finite element analysis of pile-soil-structure dynamic interaction in liquefiable site[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 646-651. |
[8] | XING Haofeng, GONG Xiaonan, YANG Xiaojun. Simplified analysis for consolidation of gravel-pile composite foundation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 521-524. |
[9] | LU Xinzheng, SONG Erxiang, JI Lin, SUI Feng. 3-Dimensional FEA for the interaction between supporting structure of excavation and soil in a very deep pit[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(4): 488-491. |
[10] | Yu Zehong, Zhang Qisen. Finite Element Analysis for Mechanism of Geonets-Soil Interaction[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 79-85. |
1. |
温志辉,郭树乾,魏建平,张铁岗,王建伟,张立博,任永婕. 低频振动激励煤体共振增渗实验系统研制及应用. 煤田地质与勘探. 2024(09): 31-40 .
![]() | |
2. |
王雷鸣,李硕,尹升华,成亮,张超,陈威,薛森淼. 深地砂岩铀矿溶浸开采体系孔裂-渗流透明表征与定向干预研究进展. 绿色矿山. 2024(04): 381-396 .
![]() |