• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Bei, HUANG Yu. Impact effects of debris avalanches based on centrifuge modeling and DEM simulation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1498-1508, 1515. DOI: 10.11779/CJGE20230304
Citation: ZHANG Bei, HUANG Yu. Impact effects of debris avalanches based on centrifuge modeling and DEM simulation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1498-1508, 1515. DOI: 10.11779/CJGE20230304

Impact effects of debris avalanches based on centrifuge modeling and DEM simulation

More Information
  • Received Date: April 08, 2023
  • Available Online: July 02, 2023
  • The complexity of the material composition of debris avalanches results in the impact effects on engineering structures not being completely understood. In particular, how the particle size and distribution characteristics affect the impact force and its composition and how to consider the influences of characteristics of particle size in the design of barrier structures still lack in-depth researches. To answer these questions, a series of centrifuge modeling tests and DEM simulation tests are conducted. The results indicate that the particle size dominates the fluctuation behaviors of the impact force of the debris avalanche, and with the increasing particle size, the peaks become increasingly obvious, accompanied by a significant discrete impact force. The smaller particles show an obvious cushion-effect to larger particles, and they more easily enter into the void formed by larger particles and interact with the barrier, thus contributing to the total impact force. Therefore, both the particle size and the distribution characteristics control the absolute value of the impact force. The particle characteristics determine the momentum transfer mechanism at the particle scale and thus the impact effects. For this reason, it is found that the dynamic impact pressure coefficientαshows an increasing trend with the increasing Savage number of debris avalanches. Thus, it is suggested that the Froude number and Savage number should be jointly used to select appropriateα. In addition, based on the analysis of the acting point of the resultant impact force, we suggest that in engineering design, the total impact force combined with the rectangular distribution mode can be adopted for safety.
  • [1]
    HUNGR O, LEROUEIL S, PICARELLI L. The Varnes classification of landslide types, an update[J]. Landslides, 2014, 11(2): 167-194. doi: 10.1007/s10346-013-0436-y
    [2]
    许强, 李为乐, 董秀军, 等. 四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J]. 岩石力学与工程学报, 2017, 36(11): 2612-2628. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201711002.htm

    XU Qiang, LI Weile, DONG Xiujun, et al. The Xinmocun landslide on June 24, 2017 in Maoxian, Sichuan: characteristics and failure mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11): 2612-2628. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201711002.htm
    [3]
    李坤, 程谦恭, 林棋文, 等. 高速远程滑坡颗粒流研究进展[J]. 地球科学, 2022(3): 893-912. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202203012.htm

    LI Kun, CHENG Qiangong, LIN Qiwen, et al. State of the art on rock avalanche dynamics from granular flow mechanics[J]. Earth Science, 2022(3): 893-912. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202203012.htm
    [4]
    GARIANO S L, GUZZETTI F. Landslides in a changing climate[J]. Earth Science Reviews, 2016, 162: 227-252. doi: 10.1016/j.earscirev.2016.08.011
    [5]
    THOURET J C, ANTOINE S, MAGILL C, et al. Lahars and debris flows: characteristics and impacts[J]. Earth Science Reviews, 2020, 201: 103003. doi: 10.1016/j.earscirev.2019.103003
    [6]
    ZHOU G G D, SONG D, CHOI C E, et al. Surge impact behavior of granular flows: effects of water content[J]. Landslides, 2018, 15(4): 695-709. doi: 10.1007/s10346-017-0908-6
    [7]
    SHEN W G, ZHAO T, ZHAO J D, et al. Quantifying the impact of dry debris flow against a rigid barrier by DEM analyses[J]. Engineering Geology, 2018, 241: 86-96. doi: 10.1016/j.enggeo.2018.05.011
    [8]
    NG C W W, MAJEED U, CHOI C E. Effects of solid fraction of saturated granular flows on overflow and landing mechanisms of rigid barriers[J]. Géotechnique, 2024, 74(1): 27-41. doi: 10.1680/jgeot.21.00170
    [9]
    FAUG T, LACHAMP P, NAAIM M. Experimental investigation on steady granular flows interacting with an obstacle down an inclined channel: study of the dead zone upstream from the obstacle. Application to interaction between dense snow avalanches and defence structures[J]. Natural Hazards and Earth System Sciences, 2002, 2: 187-191. doi: 10.5194/nhess-2-187-2002
    [10]
    王友彪, 姚昌荣, 刘赛智, 等. 泥石流对桥墩冲击力的试验研究[J]. 岩土力学, 2019, 40(2): 616-623. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902023.htm

    WANG Youbiao, YAO Changrong, LIU Saizhi, et al. Experimental study of debris flow impact forces on bridge piers[J]. Rock and Soil Mechanics, 2019, 40(2): 616-623. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902023.htm
    [11]
    何思明, 李新坡, 吴永. 考虑弹塑性变形的泥石流大块石冲击力计算[J]. 岩石力学与工程学报, 2007, 26(8): 1664-1669. doi: 10.3321/j.issn:1000-6915.2007.08.017

    HE Siming, LI Xinpo, WU Yong. Calculation of impact force of outrunner blocks in debris flow considering elastoplastic deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1664-1669. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.08.017
    [12]
    WANG L P, SONG D R, ZHOU G G D, et al. Debris flow overflowing flexible barrier: physical process and drag load characteristics[J]. Landslides, 2022, 19(8): 1881-1896. doi: 10.1007/s10346-022-01880-0
    [13]
    ARMANINI A, ROSSI G, LARCHER M. Dynamic impact of a water and sediments surge against a rigid wall[J]. Journal of Hydraulic Research, 2020, 58(2): 314-325. doi: 10.1080/00221686.2019.1579113
    [14]
    SONG D R, CHEN X Q, ZHOU G G D, et al. Impact dynamics of debris flow against rigid obstacle in laboratory experiments[J]. Engineering Geology, 2021, 291: 106211. doi: 10.1016/j.enggeo.2021.106211
    [15]
    FAUG T. Impact force of granular flows on walls normal to the bottom: slow versus fast impact dynamics[J]. Canadian Geotechnical Journal, 2021, 58(1): 114-124. doi: 10.1139/cgj-2019-0399
    [16]
    ALBABA A, LAMBERT S, FAUG T. Dry granular avalanche impact force on a rigid wall: analytic shock solution versus discrete element simulations[J]. Physical Review E, 2018, 97(): 052903. doi: 10.1103/PhysRevE.97.052903
    [17]
    王东坡, 张小梅. 泥石流冲击弧形拦挡坝动力响应研究[J]. 岩土力学, 2020, 41(12): 3851-3861. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012004.htm

    WANG Dongpo, ZHANG Xiaomei. Study on dynamic response of debris flow impact arc-shaped dam[J]. Rock and Soil Mechanics, 2020, 41(12): 3851-3861. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012004.htm
    [18]
    BI Y Z, DU Y J, HE S M, et al. Numerical analysis of effect of baffle configuration on impact force exerted from rock avalanches[J]. Landslides, 2018, 15(5): 1029-1043. doi: 10.1007/s10346-018-0979-z
    [19]
    GOODWIN G R, CHOI C E, YUNE C Y. Towards rational use of baffle arrays on sloped and horizontal terrain for filtering boulders[J]. Canadian Geotechnical Journal, 2021, 58(10): 1571-1589. doi: 10.1139/cgj-2020-0363
    [20]
    WANG D P, LI Q Z, BI Y Z, et al. Effects of new baffles system under the impact of rock avalanches[J]. Engineering Geology, 2020, 264: 105261. doi: 10.1016/j.enggeo.2019.105261
    [21]
    JIANG Y J, ZHAO Y, TOWHATA I, et al. Influence of particle characteristics on impact event of dry granular flow[J]. Powder Technology, 2015, 270: 53-67. doi: 10.1016/j.powtec.2014.10.005
    [22]
    JIANG Y J, FAN X Y, LI T H, et al. Influence of particle-size segregation on the impact of dry granular flow[J]. Powder Technology, 2018, 340: 39-51. doi: 10.1016/j.powtec.2018.09.014
    [23]
    CUI Y F, CHOI C E, LIU L H D, et al. Effects of particle size of mono-disperse granular flows impacting a rigid barrier[J]. Natural Hazards, 2018, 91(3): 1179-1201. doi: 10.1007/s11069-018-3185-3
    [24]
    ZHANG B, HUANG Y. Effect of unsteady flow dynamics on the impact of monodisperse and bidisperse granular flow[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(2): 77. doi: 10.1007/s10064-022-02573-7
    [25]
    宋东日, 周公旦, CHOI C E, 等. 土工离心机模拟泥石流问题的相似性考虑[J]. 岩土工程学报, 2019, 41(12): 2262-2271. doi: 10.11779/CJGE201912011

    SONG Dongri, ZHOU Gongdan, CHOI C E, et al. Scaling principles of debris flow modeling using geotechnical centrifuge[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2262-2271. (in Chinese) doi: 10.11779/CJGE201912011
    [26]
    SONG D, CHOI C E, ZHOU G G D, et al. Impulse load characteristics of bouldery debris flow impact[J]. Géotechnique Letters, 2018, 8(2): 111-117. doi: 10.1680/jgele.17.00159
    [27]
    ZHANG B, HUANG Y. Impact behavior of superspeed granular flow: insights from centrifuge modeling and DEM simulation[J]. Engineering Geology, 2022, 299: 106569. doi: 10.1016/j.enggeo.2022.106569
    [28]
    DEM solutions, EDEM 2020.1 document[Z]. Edinburgh: Altair, 2020: 1-100 [April 9, 2023]. https://www.altair.com.cn/edem/.
    [29]
    GOODWIN S R, CHOI C E. Translational inertial effects and scaling considerations for coarse granular flows impacting landslide-resisting barriers[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(12): 04021153. doi: 10.1061/(ASCE)GT.1943-5606.0002661
    [30]
    LAM H W K, WONG A L. Experimental and numerical study of dynamic soil debris impact load on reinforced concrete debris-resisting barriers[J]. Landslides, 2021, 18(3): 955-966. doi: 10.1007/s10346-020-01529-w
    [31]
    KWAN J. Supplementary technical guidance on design of rigid debris-resisting barriers [R]. Hong Kong: Geotechnical Engineering Office, 2012: 1-88. https://www.cedd.gov.hk/eng/publications/geo_reports/geo_rpt270.html.
    [32]
    LI K, WANG Y F, LIN Q W, et al. Experiments on granular flow behavior and deposit characteristics: implications for rock avalanche kinematics[J]. Landslides, 2021, 18(5): 1779-1799. doi: 10.1007/s10346-020-01607-z
  • Related Articles

    [1]Seismic Rotation Stability of Retaining Wall with Cohesive-frictional Backfill Considering Embedment Depth[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20230990
    [2]YANG Feng, GAO Lianzhen, GAO Yikang, YANG Junsheng. Stability of surrounding rock and failure mode of parallel multi-line tunnels[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 976-985. DOI: 10.11779/CJGE20220202
    [3]WANG Lei, YANG Jin, LI Li-lin, HU Zhi-qiang, KE Ke, ZANG Yan-bin, SUN Ting. Wellhead stability in gas hydrate formation during deep-water drilling[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2312-2318. DOI: 10.11779/CJGE202212019
    [4]SUN Chao-wei, CHAI Jun-rui, XU Zeng-guang, QIN Yuan, LI Gang. Stability charts for determining safety factors of 3D homogeneous slopes[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2068-2077. DOI: 10.11779/CJGE201811013
    [5]XU Xiao-liang, WANG Le-hua, LI Jian-lin, CHEN Jiang-hong, QIN Wan-li, DENG Hua-feng. Investigation of failure domain by using g-line and optimum evaluation of Copulas in slope reliability analysis[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1398-1407. DOI: 10.11779/CJGE201708006
    [6]WANG Hong-xin. Safety factor of heave-resistant stability considering two- and three-dimensional size effects of foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2144-2152.
    [7]Determination of design depth of soil-nailing protection structures[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5).
    [8]MA Yongzheng, ZHENG Hong, ZHU Hehua, CAI Yongchang. Effect of cohesion on evaluating slope stability factor of safety by DDA method[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1088-1093.
    [9]QIN Aifang, HU Zhongxiong, PENG Shijuan. Depth of soil stabilization in passive area of foundation pits for Shanghai soft clay[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 935-940.
    [10]LIU Qiang, YANG Junjie, LIU Hongjun, TOYOSAWA Y, ITOH K. Stability of cutting work of natural slopes[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 566-573.

Catalog

    Article views (391) PDF downloads (92) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return