Citation: | ZHANG Bei, HUANG Yu. Impact effects of debris avalanches based on centrifuge modeling and DEM simulation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1498-1508, 1515. DOI: 10.11779/CJGE20230304 |
[1] |
HUNGR O, LEROUEIL S, PICARELLI L. The Varnes classification of landslide types, an update[J]. Landslides, 2014, 11(2): 167-194. doi: 10.1007/s10346-013-0436-y
|
[2] |
许强, 李为乐, 董秀军, 等. 四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J]. 岩石力学与工程学报, 2017, 36(11): 2612-2628. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201711002.htm
XU Qiang, LI Weile, DONG Xiujun, et al. The Xinmocun landslide on June 24, 2017 in Maoxian, Sichuan: characteristics and failure mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11): 2612-2628. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201711002.htm
|
[3] |
李坤, 程谦恭, 林棋文, 等. 高速远程滑坡颗粒流研究进展[J]. 地球科学, 2022(3): 893-912. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202203012.htm
LI Kun, CHENG Qiangong, LIN Qiwen, et al. State of the art on rock avalanche dynamics from granular flow mechanics[J]. Earth Science, 2022(3): 893-912. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202203012.htm
|
[4] |
GARIANO S L, GUZZETTI F. Landslides in a changing climate[J]. Earth Science Reviews, 2016, 162: 227-252. doi: 10.1016/j.earscirev.2016.08.011
|
[5] |
THOURET J C, ANTOINE S, MAGILL C, et al. Lahars and debris flows: characteristics and impacts[J]. Earth Science Reviews, 2020, 201: 103003. doi: 10.1016/j.earscirev.2019.103003
|
[6] |
ZHOU G G D, SONG D, CHOI C E, et al. Surge impact behavior of granular flows: effects of water content[J]. Landslides, 2018, 15(4): 695-709. doi: 10.1007/s10346-017-0908-6
|
[7] |
SHEN W G, ZHAO T, ZHAO J D, et al. Quantifying the impact of dry debris flow against a rigid barrier by DEM analyses[J]. Engineering Geology, 2018, 241: 86-96. doi: 10.1016/j.enggeo.2018.05.011
|
[8] |
NG C W W, MAJEED U, CHOI C E. Effects of solid fraction of saturated granular flows on overflow and landing mechanisms of rigid barriers[J]. Géotechnique, 2024, 74(1): 27-41. doi: 10.1680/jgeot.21.00170
|
[9] |
FAUG T, LACHAMP P, NAAIM M. Experimental investigation on steady granular flows interacting with an obstacle down an inclined channel: study of the dead zone upstream from the obstacle. Application to interaction between dense snow avalanches and defence structures[J]. Natural Hazards and Earth System Sciences, 2002, 2: 187-191. doi: 10.5194/nhess-2-187-2002
|
[10] |
王友彪, 姚昌荣, 刘赛智, 等. 泥石流对桥墩冲击力的试验研究[J]. 岩土力学, 2019, 40(2): 616-623. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902023.htm
WANG Youbiao, YAO Changrong, LIU Saizhi, et al. Experimental study of debris flow impact forces on bridge piers[J]. Rock and Soil Mechanics, 2019, 40(2): 616-623. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902023.htm
|
[11] |
何思明, 李新坡, 吴永. 考虑弹塑性变形的泥石流大块石冲击力计算[J]. 岩石力学与工程学报, 2007, 26(8): 1664-1669. doi: 10.3321/j.issn:1000-6915.2007.08.017
HE Siming, LI Xinpo, WU Yong. Calculation of impact force of outrunner blocks in debris flow considering elastoplastic deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1664-1669. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.08.017
|
[12] |
WANG L P, SONG D R, ZHOU G G D, et al. Debris flow overflowing flexible barrier: physical process and drag load characteristics[J]. Landslides, 2022, 19(8): 1881-1896. doi: 10.1007/s10346-022-01880-0
|
[13] |
ARMANINI A, ROSSI G, LARCHER M. Dynamic impact of a water and sediments surge against a rigid wall[J]. Journal of Hydraulic Research, 2020, 58(2): 314-325. doi: 10.1080/00221686.2019.1579113
|
[14] |
SONG D R, CHEN X Q, ZHOU G G D, et al. Impact dynamics of debris flow against rigid obstacle in laboratory experiments[J]. Engineering Geology, 2021, 291: 106211. doi: 10.1016/j.enggeo.2021.106211
|
[15] |
FAUG T. Impact force of granular flows on walls normal to the bottom: slow versus fast impact dynamics[J]. Canadian Geotechnical Journal, 2021, 58(1): 114-124. doi: 10.1139/cgj-2019-0399
|
[16] |
ALBABA A, LAMBERT S, FAUG T. Dry granular avalanche impact force on a rigid wall: analytic shock solution versus discrete element simulations[J]. Physical Review E, 2018, 97(): 052903. doi: 10.1103/PhysRevE.97.052903
|
[17] |
王东坡, 张小梅. 泥石流冲击弧形拦挡坝动力响应研究[J]. 岩土力学, 2020, 41(12): 3851-3861. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012004.htm
WANG Dongpo, ZHANG Xiaomei. Study on dynamic response of debris flow impact arc-shaped dam[J]. Rock and Soil Mechanics, 2020, 41(12): 3851-3861. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012004.htm
|
[18] |
BI Y Z, DU Y J, HE S M, et al. Numerical analysis of effect of baffle configuration on impact force exerted from rock avalanches[J]. Landslides, 2018, 15(5): 1029-1043. doi: 10.1007/s10346-018-0979-z
|
[19] |
GOODWIN G R, CHOI C E, YUNE C Y. Towards rational use of baffle arrays on sloped and horizontal terrain for filtering boulders[J]. Canadian Geotechnical Journal, 2021, 58(10): 1571-1589. doi: 10.1139/cgj-2020-0363
|
[20] |
WANG D P, LI Q Z, BI Y Z, et al. Effects of new baffles system under the impact of rock avalanches[J]. Engineering Geology, 2020, 264: 105261. doi: 10.1016/j.enggeo.2019.105261
|
[21] |
JIANG Y J, ZHAO Y, TOWHATA I, et al. Influence of particle characteristics on impact event of dry granular flow[J]. Powder Technology, 2015, 270: 53-67. doi: 10.1016/j.powtec.2014.10.005
|
[22] |
JIANG Y J, FAN X Y, LI T H, et al. Influence of particle-size segregation on the impact of dry granular flow[J]. Powder Technology, 2018, 340: 39-51. doi: 10.1016/j.powtec.2018.09.014
|
[23] |
CUI Y F, CHOI C E, LIU L H D, et al. Effects of particle size of mono-disperse granular flows impacting a rigid barrier[J]. Natural Hazards, 2018, 91(3): 1179-1201. doi: 10.1007/s11069-018-3185-3
|
[24] |
ZHANG B, HUANG Y. Effect of unsteady flow dynamics on the impact of monodisperse and bidisperse granular flow[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(2): 77. doi: 10.1007/s10064-022-02573-7
|
[25] |
宋东日, 周公旦, CHOI C E, 等. 土工离心机模拟泥石流问题的相似性考虑[J]. 岩土工程学报, 2019, 41(12): 2262-2271. doi: 10.11779/CJGE201912011
SONG Dongri, ZHOU Gongdan, CHOI C E, et al. Scaling principles of debris flow modeling using geotechnical centrifuge[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2262-2271. (in Chinese) doi: 10.11779/CJGE201912011
|
[26] |
SONG D, CHOI C E, ZHOU G G D, et al. Impulse load characteristics of bouldery debris flow impact[J]. Géotechnique Letters, 2018, 8(2): 111-117. doi: 10.1680/jgele.17.00159
|
[27] |
ZHANG B, HUANG Y. Impact behavior of superspeed granular flow: insights from centrifuge modeling and DEM simulation[J]. Engineering Geology, 2022, 299: 106569. doi: 10.1016/j.enggeo.2022.106569
|
[28] |
DEM solutions, EDEM 2020.1 document[Z]. Edinburgh: Altair, 2020: 1-100 [April 9, 2023]. https://www.altair.com.cn/edem/.
|
[29] |
GOODWIN S R, CHOI C E. Translational inertial effects and scaling considerations for coarse granular flows impacting landslide-resisting barriers[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(12): 04021153. doi: 10.1061/(ASCE)GT.1943-5606.0002661
|
[30] |
LAM H W K, WONG A L. Experimental and numerical study of dynamic soil debris impact load on reinforced concrete debris-resisting barriers[J]. Landslides, 2021, 18(3): 955-966. doi: 10.1007/s10346-020-01529-w
|
[31] |
KWAN J. Supplementary technical guidance on design of rigid debris-resisting barriers [R]. Hong Kong: Geotechnical Engineering Office, 2012: 1-88. https://www.cedd.gov.hk/eng/publications/geo_reports/geo_rpt270.html.
|
[32] |
LI K, WANG Y F, LIN Q W, et al. Experiments on granular flow behavior and deposit characteristics: implications for rock avalanche kinematics[J]. Landslides, 2021, 18(5): 1779-1799. doi: 10.1007/s10346-020-01607-z
|
[1] | Seismic Rotation Stability of Retaining Wall with Cohesive-frictional Backfill Considering Embedment Depth[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20230990 |
[2] | YANG Feng, GAO Lianzhen, GAO Yikang, YANG Junsheng. Stability of surrounding rock and failure mode of parallel multi-line tunnels[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 976-985. DOI: 10.11779/CJGE20220202 |
[3] | WANG Lei, YANG Jin, LI Li-lin, HU Zhi-qiang, KE Ke, ZANG Yan-bin, SUN Ting. Wellhead stability in gas hydrate formation during deep-water drilling[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2312-2318. DOI: 10.11779/CJGE202212019 |
[4] | SUN Chao-wei, CHAI Jun-rui, XU Zeng-guang, QIN Yuan, LI Gang. Stability charts for determining safety factors of 3D homogeneous slopes[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2068-2077. DOI: 10.11779/CJGE201811013 |
[5] | XU Xiao-liang, WANG Le-hua, LI Jian-lin, CHEN Jiang-hong, QIN Wan-li, DENG Hua-feng. Investigation of failure domain by using g-line and optimum evaluation of Copulas in slope reliability analysis[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1398-1407. DOI: 10.11779/CJGE201708006 |
[6] | WANG Hong-xin. Safety factor of heave-resistant stability considering two- and three-dimensional size effects of foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2144-2152. |
[7] | Determination of design depth of soil-nailing protection structures[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5). |
[8] | MA Yongzheng, ZHENG Hong, ZHU Hehua, CAI Yongchang. Effect of cohesion on evaluating slope stability factor of safety by DDA method[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1088-1093. |
[9] | QIN Aifang, HU Zhongxiong, PENG Shijuan. Depth of soil stabilization in passive area of foundation pits for Shanghai soft clay[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 935-940. |
[10] | LIU Qiang, YANG Junjie, LIU Hongjun, TOYOSAWA Y, ITOH K. Stability of cutting work of natural slopes[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 566-573. |