• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
PAN Yi, LI Chuanxun. Large-strain nonlinear consolidation of dredged sludge yards with PHDs[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2295-2304. DOI: 10.11779/CJGE20230290
Citation: PAN Yi, LI Chuanxun. Large-strain nonlinear consolidation of dredged sludge yards with PHDs[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2295-2304. DOI: 10.11779/CJGE20230290

Large-strain nonlinear consolidation of dredged sludge yards with PHDs

More Information
  • Received Date: April 03, 2023
  • Engineering practices and indoor model tests indicate that laying prefabricated horizontal drains (PHDs) can effectively accelerate the consolidation of dredged sludge yards. However, the large-strain self-weighted consolidation theory of dredged sludge yards with PHDs, in which the characteristics of dredged sludge can be fully considered, lacks systematic researches. In this study, based on the Gibson's large-strain consolidation theory and considering the nonlinear compressibility and permeability of dredged sludge, a large-strain nonlinear consolidation model for PHD-treated sludge yards with planar seepage and vertical strain is established, and the solution for this model is obtained by the finite difference method. The reliability of the large-strain nonlinear consolidation model and its solution for the PHD-treated sludge yards is verified by comparing with that for the large-strain self-weighted consolidation of dredged sludge yards without PHDs. On this basis, the influences of different factors on large-strain consolidation behaviors of dredged sludge yards are investigated. The results show that: (1) The consolidation rate can be achieved at the same level as the fully permeable boundary at the bottom once the rate of laying PHDs reaches a certain value, and the optimal rate of laying PHDs decreases with the increase of the stacking height of dredged sludge yards. (2) The optimal rates of laying PHDs are 50% and 27% for stacking heights of 1 and 5 m, respectively. (3) The stacking height has a great influence on the consolidation rate of yards treated with PHDs, and the consolidation rate of yards can be accelerated by increasing the number of PHD layers. (4) The consolidation rate increases with the increase of the permeability index when the compression index keeps fixed. (5) The consolidation rate decreases with the increase of the compression index when the permeability index remains constant.
  • [1]
    吴思麟, 朱伟, 刘既明, 等. 环保疏浚泥处理工程泥性质变化规律及问题分析[J]. 岩土工程学报, 2019, 41(12): 2290-2296. doi: 10.11779/CJGE201912014

    WU Silin, ZHU Wei, LIU Jiming, et al. Change laws of mud property and problems in typical environmental dredging treatment projects[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2290-2296. (in Chinese) doi: 10.11779/CJGE201912014
    [2]
    杨媛媛, 胡黎明, ANGE N, 等. 疏浚污泥资源化处理试验研究[J]. 岩土力学, 2009, 30(5): 1323-1327. doi: 10.3969/j.issn.1000-7598.2009.05.023

    YANG Yuanyuan, HU Liming, ANGE N, et al. Laboratory tests on valorization technique of dredged sediment[J]. Rock and Soil Mechanics, 2009, 30(5): 1323-1327. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.05.023
    [3]
    TANG P P, ZHANG W L, CHEN Y H, et al. Stabilization/solidification and recycling of sediment from Taihu Lake in China: engineering behavior and environmental impact[J]. Waste Management, 2020, 116: 1-8. doi: 10.1016/j.wasman.2020.07.040
    [4]
    RAKSHITH S, SINGH D N. Utilization of dredged sediments: contemporary issues[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2017, 143(3): 04016025. doi: 10.1061/(ASCE)WW.1943-5460.0000376
    [5]
    高扬, 孙科, 谭一军, 等. 多种疏浚淤泥脱水技术的典型应用及分析[J]. 江苏水利, 2020(9): 51-54.

    GAO Yang, SUN Ke, TAN Yijun, et al. Typical application and analysis of various dredged silt dehydration technology[J]. Jiangsu Water Resources, 2020(9): 51-54. (in Chinese)
    [6]
    吴思麟, 朱伟, 闵凡路, 等. 泥浆真空抽滤泥水分离中堵塞机理及规律性研究[J]. 岩土工程学报, 2017, 39(8): 1530-1537. doi: 10.11779/CJGE201708022

    WU Silin, ZHU Wei, MIN Fanlu, et al. Clogging mechanism and effect of cake permeability in soil-water separation using vacuum filtration[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1530-1537. (in Chinese) doi: 10.11779/CJGE201708022
    [7]
    蔡袁强. 吹填淤泥真空预压固结机理与排水体防淤堵处理技术[J]. 岩土工程学报, 2021, 43(2): 201-225. doi: 10.11779/CJGE202102001

    CAI Yuanqiang. Consolidation mechanism of vacuum preloading for dredged slurry and anti-clogging method for drains[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 201-225. (in Chinese) doi: 10.11779/CJGE202102001
    [8]
    SHINSHA H, KUMAGAI T. Bulk compression of dredged soils by vacuum consolidation method using horizontal drains[J]. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 2014, 45(3): 78-85.
    [9]
    王海燕, 张文彬, 刘凌云, 等. 水平排水板真空预压法处理吹填土现场试验研究[J]. 中国港湾建设, 2016, 36(12): 57-62. doi: 10.7640/zggwjs201612012

    WANG Haiyan, ZHANG Wenbin, LIU Lingyun, et al. Field experimental study on dredger fill flow mud improved by vacuum preloading method employing horizontal drains[J]. China Harbour Engineering, 2016, 36(12): 57-62. (in Chinese) doi: 10.7640/zggwjs201612012
    [10]
    周洋, 蒲诃夫, 李展毅, 等. 水平排水板-真空预压联合处理高含水率疏浚淤泥模型试验研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 3246-3251.

    ZHOU Yang, PU Hefu, LI Zhanyi, et al. Experimental investigations on treatment of dredged slurry by vacuum-assisted prefabricated horizontal drains[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 3246-3251. (in Chinese)
    [11]
    陈征, 张峰, 陈益峰, 等. 排水通道分布式布设下双层地基平面应变固结分析[J]. 工程力学, 2020, 37(1): 135-144.

    CHEN Zheng, ZHANG Feng, CHEN Yifeng, et al. Plane-strain consolidation analysis of double-layered ground with strip-shaped distributed drainage boundary[J]. Engineering Mechanics, 2020, 37(1): 135-144. (in Chinese)
    [12]
    CHAI J C, HORPIBULSUK S, SHEN S L, et al. Consolidation analysis of clayey deposits under vacuum pressure with horizontal drains[J]. Geotextiles and Geomembranes, 2014, 42(5): 437-444. doi: 10.1016/j.geotexmem.2014.07.001
    [13]
    CHAI J C, WANG J, DING W Q, et al. Method for calculating horizontal drain induced non-linear and large strain degree of consolidation[J]. Geotextiles and Geomembranes, 2022, 50(2): 231-237. doi: 10.1016/j.geotexmem.2021.09.008
    [14]
    李传勋, 仇超. 高压缩性软土一维非线性大应变固结解析解[J]. 岩石力学与工程学报, 2021, 40(11): 2344-2356.

    LI Chuanxun, QIU Chao. An analytical solution for one-dimensional nonlinear large-strain consolidation of soft clay with high compressibility[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(11): 2344-2356. (in Chinese)
    [15]
    LEE K, SILLS G C. The consolidation of a soil stratum, including self-weight effects and large strains[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1981, 5(4): 405-428. doi: 10.1002/nag.1610050406
    [16]
    蒲诃夫, 宋丁豹, 郑俊杰, 等. 饱和软土大变形非线性自重固结模型[J]. 岩土力学, 2019, 40(5): 1683-1692, 1703.

    PU Hefu, SONG Dingbao, ZHENG Junjie, et al. Non-linear self-weight consolidation model of saturated soft soil under large-strain condition[J]. Rock and Soil Mechanics, 2019, 40(5): 1683-1692, 1703. (in Chinese)
    [17]
    BUTTERFIELD R. A natural compression law for soils (an advance on e-log p')[J]. Géotechnique, 1979, 29(4): 469-480. doi: 10.1680/geot.1979.29.4.469
    [18]
    TILLER F M, KHATIB Z. The theory of sediment volumes of compressible, particulate structures[J]. Journal of Colloid and Interface Science, 1984, 100(1): 55-67. doi: 10.1016/0021-9797(84)90411-9
    [19]
    林政, 赵智君. 自重和真空负压下吹填淤泥固结性状分析[J]. 建筑结构, 2012, 42(8): 114-118, 123.

    LIN Zheng, ZHAO Zhijun. Analysis of consolidation characteristics of dredger soil under self-weight and vacuum pressure[J]. Building Structure, 2012, 42(8): 114-118, 123. (in Chinese)
    [20]
    曾玲玲, 洪振舜, 陈福全. 压缩过程中重塑黏土渗透系数的变化规律[J]. 岩土力学, 2012, 33(5): 1286-1292. doi: 10.3969/j.issn.1000-7598.2012.05.002

    ZENG Lingling, HONG Zhenshun, CHEN Fuquan. A law of change in permeability coefficient during compression of remolded clays[J]. Rock and Soil Mechanics, 2012, 33(5): 1286-1292. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.05.002
    [21]
    GIBSON R E, SCHIFFMAN R L, CARGILL K W. The theory of one-dimensional consolidation of saturated clays: Ⅱ Finite nonlinear consolidation of thick homogeneous layers[J]. Canadian Geotechnical Journal, 1981, 18(2): 280-293. doi: 10.1139/t81-030
    [22]
    闵涛, 张海燕, 周宏宇, 等. 二维变系数热传导方程初边值问题的交替方向隐格式[J]. 西安工业大学学报, 2007, 27(2): 199-204. doi: 10.3969/j.issn.1673-9965.2007.02.021

    MIN Tao, ZHANG Haiyan, ZHOU Hongyu, et al. Alternating direction implicit scheme of initial-boundary problem for two-dimension heat conduction equation with variable coefficients[J]. Journal of Xi'an Technological University, 2007, 27(2): 199-204. (in Chinese) doi: 10.3969/j.issn.1673-9965.2007.02.021
    [23]
    PU H F, SONG D B, FOX P J. Benchmark problem for large strain self-weight consolidation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(5): 1-3.
    [24]
    仇超, 李传勋, 李红军. 单级等速加载下高压缩性软土非线性大应变固结解析解[J]. 岩土力学, 2021, 42(8): 2195-2206.

    QIU Chao, LI Chuanxun, LI Hongjun. Analytical solutions for one-dimensional nonlinear large-strain consolidation of high compressible soil under a ramp loading[J]. Rock and Soil Mechanics, 2021, 42(8): 2195-2206. (in Chinese)
  • Related Articles

    [1]FENG Huai-ping, MA De-liang, WANG Zhi-peng, CHANG Jian-mei. Measurement of resistivity of unsaturated soils using van der Pauw method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 690-696. DOI: 10.11779/CJGE201704014
    [2]LIU Song-yu, BIAN Han-liang, CAI Guo-jun, CHU Ya. Influences of water and oil two-phase on electrical resistivity of oil-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 170-177. DOI: 10.11779/CJGE201701016
    [3]LIU Ting-fa, NIE Yan-xia, HU Li-ming, ZHOU Qi-you, WEN Qing-bo. Model tests on moisture migration based on high-density electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 761-768. DOI: 10.11779/CJGE201604023
    [4]ZHAO Yan-ru, CHEN Xiang-sheng, HUANG Li-ping, ZHOU Zhong-hua, XIE Qiang. Experimental study on electrical resistivity of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2205-2216. DOI: 10.11779/CJGE201512010
    [5]GUO Xiu-jun, WU Shui-juan, MA Yuan-yuan. Quantitative investigation of landfill-leachate contaminated sand soil with electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2066-2071.
    [6]LIU Bin, NIE Li-chao, LI Shu-cai, LI Li-ping, SONG Jie, LIU Zheng-yu. Numerical forward and model tests of water inrush real-time monitoring in tunnels based on electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2026-2035.
    [7]Numerical modeling of direct current electrical resistivity with 3D FEM based on PCG algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1846-1855.
    [8]ZHA Fusheng, LIU Songyu, DU Yanjun, CUI Kerui. Quantitative research on microstructures of expansive soils during swelling using electrical resistivity measurements[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1832-1839.
    [9]HAN Lihua, LIU Songyu, DU Yanjun. New method for testing contaminated soil——electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1028-1032.
    [10]SUN Yue. Numerical analysis for three-dimensional resistivity model by using finite element/infinite element methods[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 733-737.
  • Cited by

    Periodical cited type(11)

    1. 吕庆强,蔡伟. 某库区移民场地条件变化后的砂土液化研究. 地质灾害与环境保护. 2024(01): 70-73 .
    2. 李雨润,范浩然,闫志晓,辛晓梅. 干砂与饱和砂土场地直斜群桩横向动力响应特性对比研究. 自然灾害学报. 2024(03): 202-216 .
    3. 杨洋,魏怡童. 基于分类树的液化概率等级评估新方法. 岩土力学. 2024(07): 2175-2186+2194 .
    4. 李萍萍,赵少飞,鲍俊文,刘子源. 基于标贯试验的含细粒砂土液化概率判别新模型. 防灾减灾工程学报. 2024(05): 1133-1139 .
    5. 袁近远,苏安双,陈龙伟,许成顺,王淼,袁晓铭,张思宇. 基于剪切波速的砾性土液化概率计算的中国方法. 岩土力学. 2024(11): 3378-3387+3415 .
    6. 袁近远,王兰民,汪云龙,袁晓铭. 不同设防水准下场地液化震害风险差异性研究. 岩石力学与工程学报. 2023(01): 246-260 .
    7. 王维铭,陈龙伟,郭婷婷,汪云龙,凌贤长. 基于中国砂土液化数据库的标准贯入试验液化判别方法研究. 岩土力学. 2023(01): 279-288 .
    8. 郝少雷,张兵,徐世光,李岳峰,陈梦瑞,邓立雄,郭薇. 基于SPT-APD-DDA的砂土液化评价方法研究. 地震工程学报. 2023(04): 877-886 .
    9. 李原,王睿,张建民. 地下水位上升对北京土层地震液化的影响. 土木工程学报. 2023(S2): 95-103 .
    10. 赵志江. 泵站基础液化判别方法分析. 水利技术监督. 2023(12): 217-221 .
    11. 邱香,袁晓铭,李鑫洋,汪云龙,李兆焱,张思宇. 不同地区数据下CPT液化判别公式的差异性与互用可行性研究. 土木工程学报. 2022(S1): 241-249 .

    Other cited types(6)

Catalog

    Article views (191) PDF downloads (53) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return