Citation: | CAO Guangwei, DING Xuanming, ZHANG Dingxin, ZHANG Yuting, WANG Chunyan. Bearing behaviors of large-diameter monopiles in soft clay under horizontal cyclic loading based on centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1574-1585. DOI: 10.11779/CJGE20221276 |
[1] |
CAO G W, CHEN Z X, WANG C L, et al. Dynamic responses of offshore wind turbine considering soil nonlinearity and wind-wave load combinations[J]. Ocean Engineering, 2020, 217: 108155. doi: 10.1016/j.oceaneng.2020.108155
|
[2] |
DING X M, CHIAN S C, LIAN J, et al. Wind-wave combined effect on dynamic response of soil-monopile-OWT system considering cyclic hydro-mechanical clay behavior[J]. Computers and Geotechnics, 2023, 154: 105124. doi: 10.1016/j.compgeo.2022.105124
|
[3] |
朱姝. 双屈服面渐进硬化本构模型及海上风机桩基础累积变形规律[D]. 长沙: 湖南大学, 2022.
ZHU Shu. Progressive Hardening Constitutive Model of Double Yield Surface and Cumulative Deformation Law of Offshore Wind Turbine Pile Foundation[D]. Changsha: Hunan University, 2022. (in Chinese)
|
[4] |
郭玉樹, 亚克慕斯·马丁, 阿布达雷赫曼·哈里. 用循环三轴试验分析海上风力发电机单桩基础侧向位移[J]. 岩土工程学报, 2009, 31(11): 1729-1734. doi: 10.3321/j.issn:1000-4548.2009.11.014
KUO Y S, ACHMUS M, ABDEL-RAHMAN K. Estimation of lateral deformation of monopile foundations by use of cyclic triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(11): 1729-1734. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.11.014
|
[5] |
BHATTACHARYA S, COX J A, LOMBARDI D, et al. Dynamics of offshore wind turbines supported on two foundations[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2013, 166(2): 159-169. doi: 10.1680/geng.11.00015
|
[6] |
NIKITAS G, VIMALAN N J, BHATTACHARYA S. An innovative cyclic loading device to study long term performance of offshore wind turbines[J]. Soil Dynamics and Earthquake Engineering, 2016, 82: 154-160. doi: 10.1016/j.soildyn.2015.12.008
|
[7] |
ZUO H R, BI K M, HAO H. Dynamic analyses of operating offshore wind turbines including soil-structure interaction[J]. Engineering Structures, 2018, 157: 42-62. doi: 10.1016/j.engstruct.2017.12.001
|
[8] |
JEANJEAN P. Re-assessment of P-Y curves for soft clays from centrifuge testing and finite: element modeling[C]//Offshore Technology Conference, Houston, 2009.
|
[9] |
GRANT R J. Movements around a Tunnel in Two-Layer Ground (BL)[D]. London: The City University, 1998.
|
[10] |
MARTINS J P, CHANDLER R J An experimental study of skin friction around piles in clay[J]. Géotechnique, 2015, 32(2): 119-132.
|
[11] |
OVESEN N K. The use of physical models in design: the scaling law relationships[C]//Proceedings of 7th European Conference on Soil Mechanics and Foundation Engineering, 1974, 4: 318-323.
|
[12] |
徐光明, 章卫民. 离心模型中的粒径效应和边界效应研究[J]. 岩土工程学报, 1996, 18(3): 80-85. http://www.cgejournal.com/cn/article/id/9029
XU Guangming, ZHANG Weimin. A study of size effect and boundary effect in centrifugal tests[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(3): 80-85. (in Chinese) http://www.cgejournal.com/cn/article/id/9029
|
[13] |
TRUONG P, LEHANE B M. Effects of pile shape and pile end condition on the lateral response of displacement piles in soft clay[J]. Géotechnique, 2018, 68(9): 794-804. doi: 10.1680/jgeot.16.P.291
|
[14] |
MATLOCK. Correlations for design of laterally loaded pile in clay[C]//Proceedings of the Offshore Technology Conference. Houston, 1970.
|
[15] |
POULOS H G, HULL T S. The role of analytical geomechanics in foundation engineering[C]//Foiindation Engineering @ Current Principles and Practices, ASCE, 1989: 1578-1606.
|
[16] |
STEWART D P. A new site investigation tool for the centrifuge[C]//Proc Int Conf Centrifuge 91, Colorado, 1991.
|
[17] |
GUPTA B K, BASU D. Applicability of Timoshenko, Euler–Bernoulli and rigid beam theories in analysis of laterally loaded monopiles and piles[J]. Géotechnique, 2018, 68(9): 772-785. doi: 10.1680/jgeot.16.P.244
|
[18] |
TIMOSHENKO S P. Strength of materials, part II, advanced theory and problems[M]. 2nd ed. New York: D Van Nostrand, 1941.
|
[19] |
YU H S, KHONG C, WANG J. A unified plasticity model for cyclic behaviour of clay and sand[J]. Mechanics Research Communications, 2007, 34(2): 97-114. doi: 10.1016/j.mechrescom.2006.06.010
|
[20] |
LEVY N H, EINAV I, HULL T. Cyclic shakedown of piles subjected to two-dimensional lateral loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(10): 1339-1361. doi: 10.1002/nag.775
|
[21] |
BLANDON C A, PRIESTLEY M J N. Equivalent viscous damping equations for direct displacement based design[J]. Journal of Earthquake Engineering, 2005, 9(S2): 257-278.
|
[22] |
ACHMUS M, THIEKEN K, SAATHOFF J E, et al. Un- and reloading stiffness of monopile foundations in sand[J]. Applied Ocean Research, 2019, 84: 62-73. doi: 10.1016/j.apor.2019.01.001
|
[23] |
CAO G W, DING X M, YIN Z Y, et al. A new soil reaction model for large-diameter monopiles in clay[J]. Computers and Geotechnics, 2021, 137: 104311.
|
[24] |
杨清杰. 近海风机大直径单桩水平承载特性离心模型试验分析[D]. 南京: 河海大学, 2019.
YANG Qingjie. Analysis on the Lateral Bearing Response of Large-Diameter Monopiles for Offshore Wind Turbines Based on Centrifuge Model Test[D]. Nanjing: Hohai University, 2019. (in Chinese)
|
[25] |
高鲁超. 水泥土加固提升海上风电钢管桩水平承载性能研究[D]. 南京: 东南大学, 2021.
GAO Luchao. Research on Enhancement Lateral Bearing Behaviour of Monopile for Offshore Wind Turbines in Cement-Soils[D]. Nanjing: Southeast University, 2021. (in Chinese)
|
[26] |
DUNNAVANT T W, O'NEILL M W. Experimental p-y model for submerged, stiff clay[J]. Journal of Geotechnical Engineering, 1989, 115(1): 95-114.
|
[27] |
CUÉLLAR P. Pile Foundations for Offshore Wind Turbines: Numerical and Experimental Investigations on the Behaviour under Short-Term and Long-Term Cyclic Loading[D]. Berlin: Technischen Universität, 2011.
|
[1] | GAO Fuzhou, ZHANG Junyun, LUO Xiaolong, ZHAI Kexiang, ZHANG Le, HUANG Rui, WU Xiaofei. Shear mechanical properties and empirical formula of infilled rock joints[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 608-617. DOI: 10.11779/CJGE20231194 |
[2] | LIN Peiyuan, GUO Panfeng, GUO Chengchao, CHEN Lichao, WANG Fuming. Experimental study on interfacial shear properties of steel plate, polymer and soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 85-93. DOI: 10.11779/CJGE20210845 |
[3] | YOU Ming-qing. Properties of damage, cohesion and friction of rocks[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 554-560. DOI: 10.11779/CJGE201903018 |
[4] | KONG Ling-wei, XIONG Chun-fa, GUO Ai-guo, YANG Ai-wu. Effects of shear rate on strength properties and pile-soil interface of marine soft clay[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 13-16. DOI: 10.11779/CJGE2017S2004 |
[5] | TANG Zhi-cheng, WANG Xiao-chuan. Experimental studies on mechanical behaviour of rock joints with varying matching degrees[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2312-2319. DOI: 10.11779/CJGE201712021 |
[6] | YANG Ren-shu, CHEN Jun, FANG Shi-zheng, HOU Li-dong, CHEN Shuai-zhi. Inversion analysis of M-C criterion parameters of rock based on uniaxial shearing failure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1351-1356. DOI: 10.11779/CJGE201707023 |
[7] | WANG Gang, ZHANG Xue-peng, JIANG Yu-jing, ZHANG Yong-zheng. New shear strength criterion for rough rock joints considering shear velocity[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1399-1404. DOI: 10.11779/CJGE201508006 |
[8] | LEI Guo-hui, CHEN Jing-jing. Tribological explanation of effective stress controlling shear strength of saturated geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1517-1525. |
[9] | TONG Zhiyi, CHEN Congxin, XU Jian, ZHANG Gaochao, LU Wei. Selection of shear strength of structural plane based on adhesion friction theory[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1367-1371. |
[10] | Guo Shaohua. Standard space theory of strength criterion for anisotropic internal friction materials[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(3): 340-343. |