• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CAO Guangwei, DING Xuanming, ZHANG Dingxin, ZHANG Yuting, WANG Chunyan. Bearing behaviors of large-diameter monopiles in soft clay under horizontal cyclic loading based on centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1574-1585. DOI: 10.11779/CJGE20221276
Citation: CAO Guangwei, DING Xuanming, ZHANG Dingxin, ZHANG Yuting, WANG Chunyan. Bearing behaviors of large-diameter monopiles in soft clay under horizontal cyclic loading based on centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1574-1585. DOI: 10.11779/CJGE20221276

Bearing behaviors of large-diameter monopiles in soft clay under horizontal cyclic loading based on centrifugal model tests

More Information
  • Received Date: October 14, 2022
  • Available Online: March 13, 2023
  • The response characteristics of large-diameter monopiles under static and dynamic loads are obviously different from those of traditional small-diameter piles. To study their cyclic responses, the centrifuge tests on the large-diameter monopiles in soft clay under horizontal cyclic loading are carried out. Through a contrast study on the cyclic responses of monopiles under different working conditions, the laws of deformation characteristics, stiffness weakening and excess pore pressure accumulation of large-diameter monopiles are investigated. The test results show that the increase percentage of the bending moment caused by the number of cycles is less than 10% of the first maximum bending moment. With the increasing amplitude of one-way cyclic loads, the whole large-diameter pile-soil system can go through the elastic stage, elastoplastic shakedown stage and ratchet failure stage. The unloading stiffness, lateral cumulative displacement and excess pore pressure of soils around the piles are affected by the cyclic amplitude and number of cycles. Additionally, the unloading stiffness is also positively correlated with the pile diameter. The negative excess pore pressure can significantly accumulate at the pile toe of large-diameter rigid piles, which may offset the effects of soil weakening on the lateral behaviors of a monopile. When the amplitude ratio of the cyclic loads is below 68%, the whole pile-soil system is stable, and the lateral resistance of soils insignificantly weakens. It is recommended that the loading secant stiffness of p-y curve within the wedge soil flow zone should be reduced by 0.8 to consider the cyclic weakening effects.
  • [1]
    CAO G W, CHEN Z X, WANG C L, et al. Dynamic responses of offshore wind turbine considering soil nonlinearity and wind-wave load combinations[J]. Ocean Engineering, 2020, 217: 108155. doi: 10.1016/j.oceaneng.2020.108155
    [2]
    DING X M, CHIAN S C, LIAN J, et al. Wind-wave combined effect on dynamic response of soil-monopile-OWT system considering cyclic hydro-mechanical clay behavior[J]. Computers and Geotechnics, 2023, 154: 105124. doi: 10.1016/j.compgeo.2022.105124
    [3]
    朱姝. 双屈服面渐进硬化本构模型及海上风机桩基础累积变形规律[D]. 长沙: 湖南大学, 2022.

    ZHU Shu. Progressive Hardening Constitutive Model of Double Yield Surface and Cumulative Deformation Law of Offshore Wind Turbine Pile Foundation[D]. Changsha: Hunan University, 2022. (in Chinese)
    [4]
    郭玉樹, 亚克慕斯·马丁, 阿布达雷赫曼·哈里. 用循环三轴试验分析海上风力发电机单桩基础侧向位移[J]. 岩土工程学报, 2009, 31(11): 1729-1734. doi: 10.3321/j.issn:1000-4548.2009.11.014

    KUO Y S, ACHMUS M, ABDEL-RAHMAN K. Estimation of lateral deformation of monopile foundations by use of cyclic triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(11): 1729-1734. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.11.014
    [5]
    BHATTACHARYA S, COX J A, LOMBARDI D, et al. Dynamics of offshore wind turbines supported on two foundations[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2013, 166(2): 159-169. doi: 10.1680/geng.11.00015
    [6]
    NIKITAS G, VIMALAN N J, BHATTACHARYA S. An innovative cyclic loading device to study long term performance of offshore wind turbines[J]. Soil Dynamics and Earthquake Engineering, 2016, 82: 154-160. doi: 10.1016/j.soildyn.2015.12.008
    [7]
    ZUO H R, BI K M, HAO H. Dynamic analyses of operating offshore wind turbines including soil-structure interaction[J]. Engineering Structures, 2018, 157: 42-62. doi: 10.1016/j.engstruct.2017.12.001
    [8]
    JEANJEAN P. Re-assessment of P-Y curves for soft clays from centrifuge testing and finite: element modeling[C]//Offshore Technology Conference, Houston, 2009.
    [9]
    GRANT R J. Movements around a Tunnel in Two-Layer Ground (BL)[D]. London: The City University, 1998.
    [10]
    MARTINS J P, CHANDLER R J An experimental study of skin friction around piles in clay[J]. Géotechnique, 2015, 32(2): 119-132.
    [11]
    OVESEN N K. The use of physical models in design: the scaling law relationships[C]//Proceedings of 7th European Conference on Soil Mechanics and Foundation Engineering, 1974, 4: 318-323.
    [12]
    徐光明, 章卫民. 离心模型中的粒径效应和边界效应研究[J]. 岩土工程学报, 1996, 18(3): 80-85. http://www.cgejournal.com/cn/article/id/9029

    XU Guangming, ZHANG Weimin. A study of size effect and boundary effect in centrifugal tests[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(3): 80-85. (in Chinese) http://www.cgejournal.com/cn/article/id/9029
    [13]
    TRUONG P, LEHANE B M. Effects of pile shape and pile end condition on the lateral response of displacement piles in soft clay[J]. Géotechnique, 2018, 68(9): 794-804. doi: 10.1680/jgeot.16.P.291
    [14]
    MATLOCK. Correlations for design of laterally loaded pile in clay[C]//Proceedings of the Offshore Technology Conference. Houston, 1970.
    [15]
    POULOS H G, HULL T S. The role of analytical geomechanics in foundation engineering[C]//Foiindation Engineering @ Current Principles and Practices, ASCE, 1989: 1578-1606.
    [16]
    STEWART D P. A new site investigation tool for the centrifuge[C]//Proc Int Conf Centrifuge 91, Colorado, 1991.
    [17]
    GUPTA B K, BASU D. Applicability of Timoshenko, Euler–Bernoulli and rigid beam theories in analysis of laterally loaded monopiles and piles[J]. Géotechnique, 2018, 68(9): 772-785. doi: 10.1680/jgeot.16.P.244
    [18]
    TIMOSHENKO S P. Strength of materials, part II, advanced theory and problems[M]. 2nd ed. New York: D Van Nostrand, 1941.
    [19]
    YU H S, KHONG C, WANG J. A unified plasticity model for cyclic behaviour of clay and sand[J]. Mechanics Research Communications, 2007, 34(2): 97-114. doi: 10.1016/j.mechrescom.2006.06.010
    [20]
    LEVY N H, EINAV I, HULL T. Cyclic shakedown of piles subjected to two-dimensional lateral loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(10): 1339-1361. doi: 10.1002/nag.775
    [21]
    BLANDON C A, PRIESTLEY M J N. Equivalent viscous damping equations for direct displacement based design[J]. Journal of Earthquake Engineering, 2005, 9(S2): 257-278.
    [22]
    ACHMUS M, THIEKEN K, SAATHOFF J E, et al. Un- and reloading stiffness of monopile foundations in sand[J]. Applied Ocean Research, 2019, 84: 62-73. doi: 10.1016/j.apor.2019.01.001
    [23]
    CAO G W, DING X M, YIN Z Y, et al. A new soil reaction model for large-diameter monopiles in clay[J]. Computers and Geotechnics, 2021, 137: 104311.
    [24]
    杨清杰. 近海风机大直径单桩水平承载特性离心模型试验分析[D]. 南京: 河海大学, 2019.

    YANG Qingjie. Analysis on the Lateral Bearing Response of Large-Diameter Monopiles for Offshore Wind Turbines Based on Centrifuge Model Test[D]. Nanjing: Hohai University, 2019. (in Chinese)
    [25]
    高鲁超. 水泥土加固提升海上风电钢管桩水平承载性能研究[D]. 南京: 东南大学, 2021.

    GAO Luchao. Research on Enhancement Lateral Bearing Behaviour of Monopile for Offshore Wind Turbines in Cement-Soils[D]. Nanjing: Southeast University, 2021. (in Chinese)
    [26]
    DUNNAVANT T W, O'NEILL M W. Experimental p-y model for submerged, stiff clay[J]. Journal of Geotechnical Engineering, 1989, 115(1): 95-114.
    [27]
    CUÉLLAR P. Pile Foundations for Offshore Wind Turbines: Numerical and Experimental Investigations on the Behaviour under Short-Term and Long-Term Cyclic Loading[D]. Berlin: Technischen Universität, 2011.
  • Related Articles

    [1]GAO Fuzhou, ZHANG Junyun, LUO Xiaolong, ZHAI Kexiang, ZHANG Le, HUANG Rui, WU Xiaofei. Shear mechanical properties and empirical formula of infilled rock joints[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 608-617. DOI: 10.11779/CJGE20231194
    [2]LIN Peiyuan, GUO Panfeng, GUO Chengchao, CHEN Lichao, WANG Fuming. Experimental study on interfacial shear properties of steel plate, polymer and soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 85-93. DOI: 10.11779/CJGE20210845
    [3]YOU Ming-qing. Properties of damage, cohesion and friction of rocks[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 554-560. DOI: 10.11779/CJGE201903018
    [4]KONG Ling-wei, XIONG Chun-fa, GUO Ai-guo, YANG Ai-wu. Effects of shear rate on strength properties and pile-soil interface of marine soft clay[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 13-16. DOI: 10.11779/CJGE2017S2004
    [5]TANG Zhi-cheng, WANG Xiao-chuan. Experimental studies on mechanical behaviour of rock joints with varying matching degrees[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2312-2319. DOI: 10.11779/CJGE201712021
    [6]YANG Ren-shu, CHEN Jun, FANG Shi-zheng, HOU Li-dong, CHEN Shuai-zhi. Inversion analysis of M-C criterion parameters of rock based on uniaxial shearing failure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1351-1356. DOI: 10.11779/CJGE201707023
    [7]WANG Gang, ZHANG Xue-peng, JIANG Yu-jing, ZHANG Yong-zheng. New shear strength criterion for rough rock joints considering shear velocity[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1399-1404. DOI: 10.11779/CJGE201508006
    [8]LEI Guo-hui, CHEN Jing-jing. Tribological explanation of effective stress controlling shear strength of saturated geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1517-1525.
    [9]TONG Zhiyi, CHEN Congxin, XU Jian, ZHANG Gaochao, LU Wei. Selection of shear strength of structural plane based on adhesion friction theory[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1367-1371.
    [10]Guo Shaohua. Standard space theory of strength criterion for anisotropic internal friction materials[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(3): 340-343.
  • Cited by

    Periodical cited type(9)

    1. 郭文远,李世民,王志岗,高涛,陶连金,谢霖,刘建功,刘华南. 正断层错动作用下浅埋地铁隧道受力分析方法及抗断设计研究. 振动与冲击. 2025(01): 252-261+297 .
    2. 王浩鱇,申玉生,潘笑海,常铭宇,张昕阳,粟威. 强震区穿越多破裂面破碎带隧道动力特性试验研究. 现代隧道技术. 2025(01): 212-220+230 .
    3. 王志岗,陶连金,石城,史明,刘建功. 逆断层错动作用下双仓管廊结构力学特性和抗断设计研究. 土木工程学报. 2024(07): 37-50 .
    4. 翟之阳,王春瑶,路平. 地震作用下隧道不同位置单一及组合渗漏规律研究. 安徽建筑. 2024(09): 153-157 .
    5. 张治国,冯家伟,朱正国,赵其华,孙苗苗. 断层错动下非连续管道的力学响应分析. 岩土力学. 2024(11): 3221-3234 .
    6. 王天强,耿萍,何川,王琦. 穿越活动断裂带螺旋隧道抗错性能模型试验研究. 岩石力学与工程学报. 2024(11): 2738-2752 .
    7. 张君臣,李伟平,晏启祥,张伟列,孙明辉,陈文宇. 含有空心榫的盾构隧道环缝接头柔性特征研究. 土木工程学报. 2024(12): 104-117 .
    8. 王综仕,韩现民,徐孟起,王为鑫. 断层错动-地震不同时序作用对隧道的影响研究. 石家庄铁道大学学报(自然科学版). 2024(04): 45-50+124 .
    9. 朱合华,禹海涛,韩富强,卫一博,袁勇. 穿越活动断层隧道抗震韧性设计理念与关键问题. 中国公路学报. 2023(11): 193-204 .

    Other cited types(2)

Catalog

    Article views (479) PDF downloads (193) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return