Citation: | ZHANG Wei-jie, YU Rui-hua, CHEN Yu, GAO Yu-feng, HUANG Yu. Post-failure movement characteristics and parameter back-analysis for landslides considering effect of strength parameters[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2304-2311. DOI: 10.11779/CJGE202212018 |
[1] |
中国自然资源报. 去年我国共成功预报地质灾害534起[EB/OL] 北京: 中国自然资源, 2021-01-18. http://www.mnr.gov.cn/dt/ywbb/202101/t20210118_2598832.html.
China Natural Resources News. China Successfully Predicted 534 Geological Disasters Last Year [EB/OL], 2021-01-18. http://www.mnr.gov.cn/dt/ywbb/202101/t20210118_2598832.html. (in Chinese)
|
[2] |
孙玉进, 宋二祥. "12·20"深圳滑坡动态模拟[J]. 岩土工程学报, 2018, 40(3): 441–448. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803009.htm
SUN Yu-jin, SONG Er-xiang. Dynamic simulation of "12·20" Shenzhen landslide[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 441–448. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803009.htm
|
[3] |
郑光, 许强, 刘秀伟, 等. 2019年7月23日贵州水城县鸡场镇滑坡-碎屑流特征与成因机理研究[J]. 工程地质学报, 2020, 28(3): 541–556. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202003012.htm
ZHENG Guang, XU Qiang, LIU Xiu-wei, et al. The Jichang landslide on July 23, 2019 in Shuicheng, Guizhou: characteristics and failure mechanism[J]. Journal of Engineering Geology, 2020, 28(3): 541–556. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202003012.htm
|
[4] |
许强, 黄润秋. 5.12汶川大地震诱发大型崩滑灾害动力特征初探[J]. 工程地质学报, 2008, 16(6): 721–729. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200806001.htm
XU Qiang, HUANG Run-qiu. Kinetics characteristics of large landslides triggered by May 12th Wenchuan earthquake[J]. Journal of Engineering Geology, 2008, 16(6): 721–729. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200806001.htm
|
[5] |
YIN Z Y, JIN Z, KOTRONIS P, et al. Novel SPH SIMSAND–based approach for modeling of granular collapse[J]. International Journal of Geomechanics, 2018, 18(11): 04018156. doi: 10.1061/(ASCE)GM.1943-5622.0001255
|
[6] |
YANG E, BUI H H, DE STERCK H, et al. A scalable parallel computing SPH framework for predictions of geophysical granular flows[J]. Computers and Geotechnics, 2020, 121: 103474. doi: 10.1016/j.compgeo.2020.103474
|
[7] |
唐宇峰, 施富强, 廖学燕, 等. 基于光滑粒子流体动力学的流动法则对土体滑坡大变形的影响探讨[J]. 岩土力学, 2018, 39(4): 1509–1516. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804044.htm
TANG Yu-feng, SHI Fu-qiang, LIAO Xue-yan, et al. Determination on flow rules of large deformation analysis of slope using SPH method[J]. Rock and Soil Mechanics, 2018, 39(4): 1509–1516. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804044.htm
|
[8] |
BRAUN A, CUOMO S, PETROSINO S, et al. Numerical SPH analysis of debris flow Run-out and related river damming scenarios for a local case study in SW China[J]. Landslides, 2018, 15(3): 535–550. doi: 10.1007/s10346-017-0885-9
|
[9] |
HE X, LIANG D, BOLTON M D. Run-out of cut-slope landslides: mesh-free simulations[J]. Géotechnique, 2018, 68(1): 50–63. doi: 10.1680/jgeot.16.P.221
|
[10] |
ZHU C Q, HUANG Y, ZHAN L T. SPH-based simulation of flow process of a landslide at Hongao landfill in China[J]. Natural Hazards, 2018, 93(3): 1113–1126. doi: 10.1007/s11069-018-3342-8
|
[11] |
HAN Z, SU B, LI Y G, et al. Numerical simulation of debris-flow behavior based on the SPH method incorporating the Herschel-Bulkley-Papanastasiou rheology model[J]. Engineering Geology, 2019, 255: 26–36. doi: 10.1016/j.enggeo.2019.04.013
|
[12] |
胡嫚, 吴飞, 汪时机, 等. 基于光滑粒子法边坡失稳影响范围的模拟[J]. 重庆大学学报, 2019, 42(5): 56–65. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201905007.htm
HU Man, WU Fei, WANG Shi-ji, et al. Modeling of influenced area after slope failure based on smoothed particle hydrodynamics (SPH)[J]. Journal of Chongqing University, 2019, 42(5): 56–65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201905007.htm
|
[13] |
LIN C, PASTOR M, YAGUE A, et al. A depth-integrated SPH model for debris floods: application to Lo Wai (Hong Kong) debris flood of August 2005[J]. Géotechnique, 2019, 69(12): 1035–1055. doi: 10.1680/jgeot.17.P.267
|
[14] |
VAGNON F, PIRULLI M, YAGUE A, et al. Comparison of two depth-averaged numerical models for debris flow runout estimation[J]. Canadian Geotechnical Journal, 2019, 56(1): 89–101. doi: 10.1139/cgj-2017-0455
|
[15] |
LIANG H, HE S M, LEI X Q, et al. Dynamic process simulation of construction solid waste (CSW) landfill landslide based on SPH considering dilatancy effects[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(2): 763–777. doi: 10.1007/s10064-017-1129-x
|
[16] |
MAO Z R, LIU G R, HUANG Y, et al. A conservative and consistent Lagrangian gradient smoothing method for earthquake-induced landslide simulation[J]. Engineering Geology, 2019, 260: 105226. doi: 10.1016/j.enggeo.2019.105226
|
[17] |
ZHANG W J, JI J, GAO Y F. SPH-based analysis of the post-failure flow behavior for soft and hard interbedded earth slope[J]. Engineering Geology, 2020, 267: 105446. doi: 10.1016/j.enggeo.2019.105446
|
[18] |
ZHANG W J, JI J, GAO Y F, et al. Spatial variability effect of internal friction angle on the post-failure behavior of landslides using a random and non-Newtonian fluid based SPH method[J]. Geoscience Frontiers, 2020, 11(4): 1107–1121. doi: 10.1016/j.gsf.2020.02.003
|
[19] |
张卫杰, 高玉峰, 黄雨, 等. 水土耦合SPH数值模型的正则化修正及其应用[J]. 岩土工程学报, 2018, 40(2): 262–269. doi: 10.11779/CJGE201802006
ZHANG Wei-jie, GAO Yu-feng, HUANG Yu, et al. Normalized correction of soil-water-coupled SPH model and its application[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 262–269. (in Chinese) doi: 10.11779/CJGE201802006
|
[20] |
ZHANG W J, MAEDA K, SAITO H, et al. Numerical analysis on seepage failures of dike due to water level-up and rainfall using a water–soil-coupled smoothed particle hydrodynamics model[J]. Acta Geotechnica, 2016, 11(6): 1401–1418. doi: 10.1007/s11440-016-0488-y
|
[21] |
ZHANG W J, XIAO D Q. Numerical analysis of the effect of strength parameters on the large-deformation flow process of earthquake-induced landslides[J]. Engineering Geology, 2019, 260: 105239. doi: 10.1016/j.enggeo.2019.105239
|
[22] |
HUANG Y, ZHANG W J, XU Q, et al. Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics[J]. Landslides, 2012, 9(2): 275–283. doi: 10.1007/s10346-011-0285-5
|
[23] |
DAI Z L, XU K, WANG F W, et al. Numerical investigation on the kinetic characteristics of the yigong debris flow in Tibet, China[J]. Water, 2021, 13(8): 1076.
|
[24] |
ZHANG W J, ZHENG H, JIANG F Y, et al. Stability analysis of soil slope based on a water-soil-coupled and parallelized Smoothed Particle Hydrodynamics model[J]. Computers and Geotechnics, 2019, 108: 212–225.
|
[25] |
LIU X, WANG Y, LI D Q. Numerical simulation of the 1995 rainfall-induced Fei Tsui Road landslide in Hong Kong: new insights from hydro-mechanically coupled material point method[J]. Landslides, 2020, 17(12): 2755–2775.
|
[26] |
LI L, WANG Y. Identification of failure slip surfaces for landslide risk assessment using smoothed particle hydrodynamics[J]. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2020, 14(2): 91–111.
|
[27] |
何坤, 胡卸文, 马国涛, 等. 四川省盐源玻璃村特大型玄武岩古滑坡复活机制[J]. 岩土力学, 2020, 41(10): 3443–3455. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010031.htm
HE Kun, HU Xie-wen, MA Guo-tao, et al. The reactivated mechanism of Boli Village giant ancient basalt landslide in Yanyuan, Sichuan[J]. Rock and Soil Mechanics, 2020, 41(10): 3443–3455. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010031.htm
|
[28] |
HU G S, LIU M, CHEN N S, et al. Real-time evacuation and failure mechanism of a giant soil landslide on 19 July 2018 in Yanyuan County, Sichuan Province, China[J]. Landslides, 2019, 16(6): 1177–1187.
|
[1] | ZHOU Jian, JIANG Yicheng, ZHU Zeming, GAN Qiyun. Theoretical and experimental studies on interfacial resistance of electro-osmotic consolidation for soft ground improvement[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 1995-2003. DOI: 10.11779/CJGE20220838 |
[2] | LI Xiao-kang, LI Xu, WU Yang, WANG Fei. Experimental study on service performance of capillary barrier cover with unsaturated drainage layer[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 189-194. DOI: 10.11779/CJGE2022S1034 |
[3] | LING Hua, WANG Wei, WANG Fang, FU Hua, HAN Hua-qiang. Experimental study on hydraulic fracture of gravelly soil core[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1444-1448. DOI: 10.11779/CJGE201808009 |
[4] | WANG Huan-ling, XU Wei-ya, CHAO Zhi-ming, KONG Qian. Experimental study on slippage effects of gas flow in compact rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 777-785. DOI: 10.11779/CJGE201605002 |
[5] | GUO Yang, CUI Wei, CHEN Fang-Bin, CHEN Qiao. Analysis and experimental study of a PHC uplift pile with hold-hoop connection[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 1007-1010. |
[6] | WU Zheng-guang, ZHANG Hua. Experimental study on entrapped air content in quasi-saturated soil subjected to steady ponded water infiltration[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 274-279. |
[7] | LUO Xingwen, YANG Mingliang, YAO Hailin, GU Zhimeng. Experimental study on engineering mechanical properities of stale refuse[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 622-625. |
[8] | FAN Qingzhong, GAO Yanfa. Experimental study on creep properties of rocks under stepwise loading[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 38-41. |
[9] | OU Xiaoduo, CAO Jing, ZHOU Dong, HUANG Shaokeng. Experimental study on chemical flocculating action of waste flush fluid[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 201-203. |
[10] | Liu Zengli, Li Hongsheng, Zhu Yuanlin, Peng Wanwei. Experimental study of criteria of compound fracture for frozen soil[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 13-17. |