• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Wei-jie, YU Rui-hua, CHEN Yu, GAO Yu-feng, HUANG Yu. Post-failure movement characteristics and parameter back-analysis for landslides considering effect of strength parameters[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2304-2311. DOI: 10.11779/CJGE202212018
Citation: ZHANG Wei-jie, YU Rui-hua, CHEN Yu, GAO Yu-feng, HUANG Yu. Post-failure movement characteristics and parameter back-analysis for landslides considering effect of strength parameters[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2304-2311. DOI: 10.11779/CJGE202212018

Post-failure movement characteristics and parameter back-analysis for landslides considering effect of strength parameters

More Information
  • Received Date: November 11, 2021
  • Available Online: December 13, 2022
  • The dynamic characteristics of flow process of landslides such as the sliding distance and the expanding velocity are of great significance to the prevention and control of landslide hazards. The current studies on landslide simulations usually focus on the reappearance of flow process and the influence mechanism of parameters, and with the absence of parameter inversion analysis, they are insufficient to provide detailed data support for the prevention of landslide disasters. Based on the SPH method, the relationship between the strength parameters and the viscosity parameter is established using the equivalent viscosity and the Bingham fluid model so as to form the flow-process simulation method for landslides. The inversion analysis is realized by the combination of the strength reduction technique and the flow profile comparison. Through the simulation and comparison of the Fei Tsui Road landslide in the Hong Kong SAR, the applicability of the proposed method is validated. On this basis, taking the 7·19 landslide in the Boli Village, Yanyuan County of Sichuan Province as the study case, the sliding distance and the expanding velocity under different strength-reduction coefficients are analyzed, and the evolution law of dynamic characteristics such as the sliding distance and the peak velocity are discussed. Comparing with the survey data of topography after the landslide, the strength parameters in the flow process can be preliminaryly determined, which is beneficial to the prevention and control of landslide hazards.
  • [1]
    中国自然资源报. 去年我国共成功预报地质灾害534起[EB/OL] 北京: 中国自然资源, 2021-01-18. http://www.mnr.gov.cn/dt/ywbb/202101/t20210118_2598832.html.

    China Natural Resources News. China Successfully Predicted 534 Geological Disasters Last Year [EB/OL], 2021-01-18. http://www.mnr.gov.cn/dt/ywbb/202101/t20210118_2598832.html. (in Chinese)
    [2]
    孙玉进, 宋二祥. "12·20"深圳滑坡动态模拟[J]. 岩土工程学报, 2018, 40(3): 441–448. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803009.htm

    SUN Yu-jin, SONG Er-xiang. Dynamic simulation of "12·20" Shenzhen landslide[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 441–448. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803009.htm
    [3]
    郑光, 许强, 刘秀伟, 等. 2019年7月23日贵州水城县鸡场镇滑坡-碎屑流特征与成因机理研究[J]. 工程地质学报, 2020, 28(3): 541–556. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202003012.htm

    ZHENG Guang, XU Qiang, LIU Xiu-wei, et al. The Jichang landslide on July 23, 2019 in Shuicheng, Guizhou: characteristics and failure mechanism[J]. Journal of Engineering Geology, 2020, 28(3): 541–556. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202003012.htm
    [4]
    许强, 黄润秋. 5.12汶川大地震诱发大型崩滑灾害动力特征初探[J]. 工程地质学报, 2008, 16(6): 721–729. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200806001.htm

    XU Qiang, HUANG Run-qiu. Kinetics characteristics of large landslides triggered by May 12th Wenchuan earthquake[J]. Journal of Engineering Geology, 2008, 16(6): 721–729. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200806001.htm
    [5]
    YIN Z Y, JIN Z, KOTRONIS P, et al. Novel SPH SIMSAND–based approach for modeling of granular collapse[J]. International Journal of Geomechanics, 2018, 18(11): 04018156. doi: 10.1061/(ASCE)GM.1943-5622.0001255
    [6]
    YANG E, BUI H H, DE STERCK H, et al. A scalable parallel computing SPH framework for predictions of geophysical granular flows[J]. Computers and Geotechnics, 2020, 121: 103474. doi: 10.1016/j.compgeo.2020.103474
    [7]
    唐宇峰, 施富强, 廖学燕, 等. 基于光滑粒子流体动力学的流动法则对土体滑坡大变形的影响探讨[J]. 岩土力学, 2018, 39(4): 1509–1516. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804044.htm

    TANG Yu-feng, SHI Fu-qiang, LIAO Xue-yan, et al. Determination on flow rules of large deformation analysis of slope using SPH method[J]. Rock and Soil Mechanics, 2018, 39(4): 1509–1516. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804044.htm
    [8]
    BRAUN A, CUOMO S, PETROSINO S, et al. Numerical SPH analysis of debris flow Run-out and related river damming scenarios for a local case study in SW China[J]. Landslides, 2018, 15(3): 535–550. doi: 10.1007/s10346-017-0885-9
    [9]
    HE X, LIANG D, BOLTON M D. Run-out of cut-slope landslides: mesh-free simulations[J]. Géotechnique, 2018, 68(1): 50–63. doi: 10.1680/jgeot.16.P.221
    [10]
    ZHU C Q, HUANG Y, ZHAN L T. SPH-based simulation of flow process of a landslide at Hongao landfill in China[J]. Natural Hazards, 2018, 93(3): 1113–1126. doi: 10.1007/s11069-018-3342-8
    [11]
    HAN Z, SU B, LI Y G, et al. Numerical simulation of debris-flow behavior based on the SPH method incorporating the Herschel-Bulkley-Papanastasiou rheology model[J]. Engineering Geology, 2019, 255: 26–36. doi: 10.1016/j.enggeo.2019.04.013
    [12]
    胡嫚, 吴飞, 汪时机, 等. 基于光滑粒子法边坡失稳影响范围的模拟[J]. 重庆大学学报, 2019, 42(5): 56–65. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201905007.htm

    HU Man, WU Fei, WANG Shi-ji, et al. Modeling of influenced area after slope failure based on smoothed particle hydrodynamics (SPH)[J]. Journal of Chongqing University, 2019, 42(5): 56–65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201905007.htm
    [13]
    LIN C, PASTOR M, YAGUE A, et al. A depth-integrated SPH model for debris floods: application to Lo Wai (Hong Kong) debris flood of August 2005[J]. Géotechnique, 2019, 69(12): 1035–1055. doi: 10.1680/jgeot.17.P.267
    [14]
    VAGNON F, PIRULLI M, YAGUE A, et al. Comparison of two depth-averaged numerical models for debris flow runout estimation[J]. Canadian Geotechnical Journal, 2019, 56(1): 89–101. doi: 10.1139/cgj-2017-0455
    [15]
    LIANG H, HE S M, LEI X Q, et al. Dynamic process simulation of construction solid waste (CSW) landfill landslide based on SPH considering dilatancy effects[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(2): 763–777. doi: 10.1007/s10064-017-1129-x
    [16]
    MAO Z R, LIU G R, HUANG Y, et al. A conservative and consistent Lagrangian gradient smoothing method for earthquake-induced landslide simulation[J]. Engineering Geology, 2019, 260: 105226. doi: 10.1016/j.enggeo.2019.105226
    [17]
    ZHANG W J, JI J, GAO Y F. SPH-based analysis of the post-failure flow behavior for soft and hard interbedded earth slope[J]. Engineering Geology, 2020, 267: 105446. doi: 10.1016/j.enggeo.2019.105446
    [18]
    ZHANG W J, JI J, GAO Y F, et al. Spatial variability effect of internal friction angle on the post-failure behavior of landslides using a random and non-Newtonian fluid based SPH method[J]. Geoscience Frontiers, 2020, 11(4): 1107–1121. doi: 10.1016/j.gsf.2020.02.003
    [19]
    张卫杰, 高玉峰, 黄雨, 等. 水土耦合SPH数值模型的正则化修正及其应用[J]. 岩土工程学报, 2018, 40(2): 262–269. doi: 10.11779/CJGE201802006

    ZHANG Wei-jie, GAO Yu-feng, HUANG Yu, et al. Normalized correction of soil-water-coupled SPH model and its application[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 262–269. (in Chinese) doi: 10.11779/CJGE201802006
    [20]
    ZHANG W J, MAEDA K, SAITO H, et al. Numerical analysis on seepage failures of dike due to water level-up and rainfall using a water–soil-coupled smoothed particle hydrodynamics model[J]. Acta Geotechnica, 2016, 11(6): 1401–1418. doi: 10.1007/s11440-016-0488-y
    [21]
    ZHANG W J, XIAO D Q. Numerical analysis of the effect of strength parameters on the large-deformation flow process of earthquake-induced landslides[J]. Engineering Geology, 2019, 260: 105239. doi: 10.1016/j.enggeo.2019.105239
    [22]
    HUANG Y, ZHANG W J, XU Q, et al. Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics[J]. Landslides, 2012, 9(2): 275–283. doi: 10.1007/s10346-011-0285-5
    [23]
    DAI Z L, XU K, WANG F W, et al. Numerical investigation on the kinetic characteristics of the yigong debris flow in Tibet, China[J]. Water, 2021, 13(8): 1076.
    [24]
    ZHANG W J, ZHENG H, JIANG F Y, et al. Stability analysis of soil slope based on a water-soil-coupled and parallelized Smoothed Particle Hydrodynamics model[J]. Computers and Geotechnics, 2019, 108: 212–225.
    [25]
    LIU X, WANG Y, LI D Q. Numerical simulation of the 1995 rainfall-induced Fei Tsui Road landslide in Hong Kong: new insights from hydro-mechanically coupled material point method[J]. Landslides, 2020, 17(12): 2755–2775.
    [26]
    LI L, WANG Y. Identification of failure slip surfaces for landslide risk assessment using smoothed particle hydrodynamics[J]. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2020, 14(2): 91–111.
    [27]
    何坤, 胡卸文, 马国涛, 等. 四川省盐源玻璃村特大型玄武岩古滑坡复活机制[J]. 岩土力学, 2020, 41(10): 3443–3455. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010031.htm

    HE Kun, HU Xie-wen, MA Guo-tao, et al. The reactivated mechanism of Boli Village giant ancient basalt landslide in Yanyuan, Sichuan[J]. Rock and Soil Mechanics, 2020, 41(10): 3443–3455. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010031.htm
    [28]
    HU G S, LIU M, CHEN N S, et al. Real-time evacuation and failure mechanism of a giant soil landslide on 19 July 2018 in Yanyuan County, Sichuan Province, China[J]. Landslides, 2019, 16(6): 1177–1187.
  • Related Articles

    [1]ZHOU Jian, JIANG Yicheng, ZHU Zeming, GAN Qiyun. Theoretical and experimental studies on interfacial resistance of electro-osmotic consolidation for soft ground improvement[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 1995-2003. DOI: 10.11779/CJGE20220838
    [2]LI Xiao-kang, LI Xu, WU Yang, WANG Fei. Experimental study on service performance of capillary barrier cover with unsaturated drainage layer[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 189-194. DOI: 10.11779/CJGE2022S1034
    [3]LING Hua, WANG Wei, WANG Fang, FU Hua, HAN Hua-qiang. Experimental study on hydraulic fracture of gravelly soil core[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1444-1448. DOI: 10.11779/CJGE201808009
    [4]WANG Huan-ling, XU Wei-ya, CHAO Zhi-ming, KONG Qian. Experimental study on slippage effects of gas flow in compact rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 777-785. DOI: 10.11779/CJGE201605002
    [5]GUO Yang, CUI Wei, CHEN Fang-Bin, CHEN Qiao. Analysis and experimental study of a PHC uplift pile with hold-hoop connection[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 1007-1010.
    [6]WU Zheng-guang, ZHANG Hua. Experimental study on entrapped air content in quasi-saturated soil subjected to steady ponded water infiltration[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 274-279.
    [7]LUO Xingwen, YANG Mingliang, YAO Hailin, GU Zhimeng. Experimental study on engineering mechanical properities of stale refuse[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 622-625.
    [8]FAN Qingzhong, GAO Yanfa. Experimental study on creep properties of rocks under stepwise loading[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 38-41.
    [9]OU Xiaoduo, CAO Jing, ZHOU Dong, HUANG Shaokeng. Experimental study on chemical flocculating action of waste flush fluid[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 201-203.
    [10]Liu Zengli, Li Hongsheng, Zhu Yuanlin, Peng Wanwei. Experimental study of criteria of compound fracture for frozen soil[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 13-17.
  • Other Related Supplements

  • Cited by

    Periodical cited type(8)

    1. 郭江峰,胡建林,薛金昊,赵天怡,张炜炯. 竖向荷载下膨胀土中桩侧摩阻力室内模型试验分析. 兰州工业学院学报. 2023(04): 28-33 .
    2. 钱建固,彭慧敏,林志强,张明远. 吸湿环境下膨胀土桩基抗拔承载特性足尺试验研究. 建筑结构学报. 2023(12): 100-109 .
    3. 齐旭辉,唐永成,蔡文江. 含水率对膨胀土地基载体桩抗压承载力影响的研究. 广东土木与建筑. 2022(01): 26-28 .
    4. 江杰,王顺苇,欧孝夺,龙逸航,张探. 竖向力与扭矩共同作用下单桩承载特性试验. 科学技术与工程. 2021(06): 2433-2438 .
    5. 汤斌,覃明兰,周标和. 基于触变效应的湛江组结构性黏土单桩模型试验. 桂林理工大学学报. 2021(02): 311-317 .
    6. 周大卫,周盛全,张勇飞,王玮健. 动静荷载作用下改良膨胀土力学特性研究. 辽宁工业大学学报(自然科学版). 2020(02): 108-113 .
    7. 罗文豪,王金淑,饶鸿. 桩基与膨胀土浸水室内模型试验研究. 四川建筑. 2020(05): 131-134 .
    8. 江杰,王顺苇,欧孝夺,付臣志. 黏土地基中桩顶扭矩-竖向荷载加载路径下单桩承载特性分析. 岩土力学. 2020(11): 3573-3582 .

    Other cited types(9)

Catalog

    Article views (189) PDF downloads (66) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return