• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI De-jian, JIA Wen-tao, CHENG Xiao, ZHAO Lian-heng, ZHANG Ying-bin, YU Peng-cheng. Stability of stepped sliding of bedding rock slopes with discontinuous joints[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2125-2134. DOI: 10.11779/CJGE202211019
Citation: LI De-jian, JIA Wen-tao, CHENG Xiao, ZHAO Lian-heng, ZHANG Ying-bin, YU Peng-cheng. Stability of stepped sliding of bedding rock slopes with discontinuous joints[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2125-2134. DOI: 10.11779/CJGE202211019

Stability of stepped sliding of bedding rock slopes with discontinuous joints

More Information
  • Received Date: November 15, 2021
  • Available Online: December 08, 2022
  • The bedding rock landslides with stepped sliding surface are common in engineering, and the characteristics of rock bridges and joints are very important to the formation of stepped sliding surface. The weakening characteristics of the strength parameters of rock bridges and joints are considered. The models for stability of stepped sliding of bedding slopes are established. The results show that the accuracy of the model is verified by comparing with the planar failure model. In addition, the fracture connectivity rate kY, basic friction angle φb, roughness coefficient JRC and weakening coefficient Kc have significant influences on Fs. In this mode, the greater β3 is, the more significant the reduction of Fs is, and the more unstable the slope is. In addition, the excavation times and slope angle have significant influences on the slope stability. The difference rate between the proposed method and the limit equilibrium solution is less than 1%. In some cases, when the joint surfaces are exposed by excavation, Fs is significantly reduced (the reduction of 22.8% when β=53°), which easily leads to the occurrence of landslides. Meanwhile, with an increase in angle β1 of tensile cracks and height hw of water, Fs significantly decreases. The water pressure is more significant when the outlets are blocked, and the rock slope is most unstable.
  • [1]
    EBERHARDT E, STEAD D, COGGAN J S. Numerical analysis of initiation and progressive failure in natural rock slopes—the 1991 Randa rockslide[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(1): 69–87. doi: 10.1016/S1365-1609(03)00076-5
    [2]
    DA HUANG, CEN D F, MA G W, et al. Step-path failure of rock slopes with intermittent joints[J]. Landslides, 2015, 12(5): 911–926. doi: 10.1007/s10346-014-0517-6
    [3]
    朱雷, 黄润秋, 严明, 等. 基于裂纹扩展模式的岩质斜坡阶梯状滑移破裂机制研究[J]. 岩土工程学报, 2017, 39(7): 1216–1224. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16953.shtml

    ZHU Lei, HUANG Run-qiu, YAN Ming, et al. Step-path failure mechanism of rock slopes based on crack coalescence modes in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1216–1224. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16953.shtml
    [4]
    郭牡丹. 基于岩体结构面特征的三维网络模拟研究[D]. 沈阳: 东北大学, 2014.

    GUO Mu-dan. Study on 3-Dimensional Network Simulation Based on the Character of Structural Planes in Rock Mass[D]. Shenyang: Northeastern University, 2014. (in Chinese)
    [5]
    黄润秋, 许强. 中国典型灾难性滑坡[M]. 北京: . 科学出版社, 2008.

    HUANG Run-qiu, XU Qiang. Catastrophic landslides in China[M]. Beijing: . China Science Press, 2008. (in Chinese)
    [6]
    GARCÍA M, PASTÉN C, SEPÚLVEDA S A, et al. Dynamic numerical investigation of a stepped-planar rockslide in the Central Andes, Chile[J]. Engineering Geology, 2018, 237: 64–75. doi: 10.1016/j.enggeo.2018.02.001
    [7]
    TANNANT D D, GIORDAN D, MORGENROTH J. Characterization and analysis of a translational rockslide on a stepped-planar slip surface[J]. Engineering Geology, 2017, 220: 144–151. doi: 10.1016/j.enggeo.2017.02.004
    [8]
    ZHAO L H, LI D J, TAN H H, et al. Characteristics of failure area and failure mechanism of a bedding rockslide in Libo County, Guizhou, China[J]. Landslides, 2019, 16(7): 1367–1374. doi: 10.1007/s10346-019-01188-6
    [9]
    杨绪波. 大型岩质边坡开挖的岩体结构效应研究-以云南澜沧江小湾水电站#4山梁边坡为例[D]. 成都: 成都理工大学,, 2005.

    YANG Xu-bo. Study on the rock mass structure effect of large rock slope during excavation-taking slope NO. 4 in Xiaowan hydropower project on Lancang river of Yunnan as an example[D]. Chengdu: Chengdu University of Technology, 2005. (in Chinese)
    [10]
    BRIDEAU M A, YAN M, STEAD D. The role of tectonic damage and brittle rock fracture in the development of large rock slope failures[J]. Geomorphology, 2009, 103(1): 30–49. doi: 10.1016/j.geomorph.2008.04.010
    [11]
    黄润秋, 陈国庆, 唐鹏. 基于动态演化特征的锁固段型岩质滑坡前兆信息研究[J]. 岩石力学与工程学报, 2017, 36(3): 521–533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703001.htm

    HUANG Run-qiu, CHEN Guo-qing, TANG Peng. Precursor information of locking segment landslides based on transient characteristics[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 521–533. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703001.htm
    [12]
    JENNINGS J E. A mathematical theory for the calculation of the stability of slopes in open cast mine[C]// Proceeding of the Symposium on the Planning Open Pit Mines. Johannesburg, 1970.
    [13]
    邹宗兴. 顺层岩质滑坡演化动力学研究[D]. 武汉: 中国地质大学, 2014.

    ZOU Zong-xing. Research on the Evolution Dynamics of the Consequent Bedding Rockslides[D]. Wuhan: China University of Geosciences, 2014. (in Chinese)
    [14]
    重庆市设计院. 工程地质勘察规范DBJ50—043—2005[S]. 2005.

    Chongqing Design Institute. Code for Engineering Geological Investigation DBJ50—043—2005[S]. 2005. (in Chinese)
    [15]
    陈祖煜, 汪小刚, 杨健, 等. 岩质边坡稳定分析—原理、方法、程序[M]. 北京: 中国水利水电出版社, 2005.

    CHEN Zu-yu, WANG Xiao-gang, YANG Jian, et al. Rock Slope Stability Analysis-Theory Methods and Programs[M]. Beijing: China WaterPower Press, 2005. (in Chinese)
    [16]
    BARTON N. Review of a new shear-strength criterion for rock joints[J]. Engineering Geology, 1973, 7(4): 287–332. doi: 10.1016/0013-7952(73)90013-6
    [17]
    BARTON N. The shear strength of rock and rock joints[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1976, 13(9): 255–279. https://www.sciencedirect.com/science/article/pii/0148906276900036
    [18]
    BANDIS S, LUMSDEN A C, BARTON N R. Experimental studies of scale effects on the shear behaviour of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1981, 18(1): 1–21. https://www.sciencedirect.com/science/article/pii/014890628190262X
    [19]
    HOEK E. Rock Engineering[M]. Netherlands: A A Balkema, 1995: 70–72.
    [20]
    PRASSETYO S H, GUTIERREZ M, BARTON N. Nonlinear shear behavior of rock joints using a linearized implementation of the Barton-Bandis model[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(4): 671–682. doi: 10.1016/j.jrmge.2017.01.006
    [21]
    唐志成, 夏才初, 刘远明. 岩桥渐进弱化的Jennings抗剪强度准则[J]. 岩土工程学报, 2012, 34(11): 2093–2099. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14891.shtml

    TANG Zhi-cheng, XIA Cai-chu, LIU Yuan-ming. Modified Jennings shear strength criterion based on mechanical weakening model of rock bridges[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2093–2099. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14891.shtml
    [22]
    邓华锋, 齐豫, 李建林, 等. 水–岩作用下断续节理砂岩力学特性劣化机理[J]. 岩土工程学报, 2021, 43(4): 634–643. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18591.shtml

    DENG Hua-feng, QI Yu, LI Jian-lin, et al. Degradation mechanism of intermittent jointed sandstone under water-rock interaction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 634–643. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18591.shtml
    [23]
    ZHANG X P, WONG L N Y. Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach[J]. Rock Mechanics and Rock Engineering, 2013, 46(5): 1001–1021.
    [24]
    王根龙, 伍法权, 张茂省. 平面滑动型岩质边坡稳定性极限分析上限法[J]. 工程地质学报, 2011, 19(2): 176–180. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201102005.htm

    WANG Gen-long, WU Fa-quan, ZHANG Mao-sheng. Method of upper bound limit analysis for plane sliding of rock slopes[J]. Journal of Engineering Geology, 2011, 19(2): 176–180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201102005.htm
    [25]
    梁文辉. 锦屏一级水电站引渠边坡稳定性研究[D]. 成都: 西南交通大学, 2009.

    LIANG Wen-hui. Study on Stability of Approach Channel Slope for Jinping 1 Hydropower Station[D]. Chengdu: Southwest Jiaotong University, 2009. (in Chinese)
    [26]
    舒继森, 王兴中, 周毅勇. 岩石边坡中滑动面水压分布假设的改进[J]. 中国矿业大学学报, 2004, 33(5): 509–512. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200405003.htm

    SHU Ji-sen, WANG Xing-zhong, ZHOU Yi-yong. Improving on assumption for water pressure distributing on failure surface in rock slope[J]. Journal of China University of Mining & Technology, 2004, 33(5): 509–512. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200405003.htm
    [27]
    ZHAO L H, ZUO S, LI L, et al. System reliability analysis of plane slide rock slope using Barton-Bandis failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 88: 1–11.
  • Cited by

    Periodical cited type(22)

    1. 贺伟明,石胜伟,蔡强,梁炯. 基于上下限解的膨胀土边坡首次滑动区域分析. 水文地质工程地质. 2025(01): 104-112 .
    2. 范文晓. 南阳膨胀土浸水变形特性及微观结构研究. 建筑科学. 2025(01): 126-135 .
    3. 沈旺. 云南省膨胀土边坡稳定性计算及成因分析. 科学技术创新. 2024(01): 159-162 .
    4. LI Tianguo,KONG Lingwei,GUO Aiguo,YAN Junbiao. Swelling pressure evolution characterization of strong expansive soil considering the influence of reserved expansion deformation. Journal of Mountain Science. 2024(01): 252-270 .
    5. 彭宇,张虎元,周光平,谭煜. 酒精湿化法调配压实膨润土缓冲回填材料含水率研究. 岩土力学. 2024(01): 235-244 .
    6. 李裕诚,陈永贵,刘丽,叶为民,王琼. 高压实膨润土多尺度膨胀力特性研究进展. 岩土工程学报. 2024(11): 2457-2464 . 本站查看
    7. 廖饶平,陈永贵,刘聪,叶为民,乌东北,王琼. 高压实膨润土与孔隙溶液物理作用机制研究进展. 岩土工程学报. 2024(12): 2465-2475 . 本站查看
    8. 梁维云,韦昌富,张芹,秦刘洋,文松松,颜荣涛. 膨润土吸湿过程中膨胀力演化及水分分布特征. 岩土工程学报. 2023(02): 283-291 . 本站查看
    9. 冯岩岩,杨婷,查文华,杨成艳. 压实高庙子膨润土中水运移时效性试验研究. 东华理工大学学报(自然科学版). 2023(02): 186-193 .
    10. 马婧,陈永贵,刘聪,叶为民,王琼. 化学作用下压实膨润土膨胀力响应机制研究进展. 岩土工程学报. 2023(10): 2042-2051 . 本站查看
    11. 李涛,黄晓冀,刘波,张荣辉,李幻. 基于颗粒流的膨胀土膨胀力时程细观机制研究. 广西大学学报(自然科学版). 2023(05): 1091-1103 .
    12. 刘万林,张芹,卢有谦,吴广水,于海浩. 白泥改良膨胀土液塑限和膨胀力试验探究. 河南工程学院学报(自然科学版). 2023(04): 22-28 .
    13. 李昆鹏,陈永贵,叶为民,崔玉军. 高压实膨润土孔隙结构特征研究进展. 岩土工程学报. 2022(03): 399-408 . 本站查看
    14. 叶为民,许利波,王琼,陈永贵,陈宝. 考虑侧壁摩阻的围岩裂隙中膨润土-砂混合物侵入过程及其模型. 岩土工程学报. 2022(04): 613-621 . 本站查看
    15. 贺勇,卢普怀,滕继东,叶为民. 化学溶液作用下基于压实膨润土孔隙结构演化的土水特征模型研究. 工程地质学报. 2022(02): 338-346 .
    16. 董洋,张文,李大伟,姚兰,初文磊,王海东,殷晓东. 柔性垂直防渗技术膨润土-黏土密封材料防渗性能研究. 环境工程技术学报. 2022(03): 824-833 .
    17. 屈祥. 湘西弱膨胀土的膨胀变形时程特性研究. 公路与汽运. 2022(04): 58-62 .
    18. 贺伟明,石胜伟,蔡强,梁炯. 考虑膨胀作用对抗剪强度影响的膨胀土边坡稳定性分析. 岩石力学与工程学报. 2022(S2): 3524-3533 .
    19. 屈祥. 湘西膨胀土膨胀变形及膨胀力特性试验研究. 湖南交通科技. 2022(04): 40-44 .
    20. 刘樟荣,叶为民,张召,崔玉军,王琼,陈永贵. 膨润土颗粒混合物的堆积性质与水-力特性研究进展. 工程地质学报. 2020(02): 294-305 .
    21. 蒋超,屈祥. 膨胀土膨胀时程特性试验及特征曲线参数确定. 土木工程与管理学报. 2020(03): 79-84 .
    22. 刘樟荣,崔玉军,叶为民,王琼,张召,陈永贵. 缓冲/回填材料——膨润土颗粒及其混合物研究进展. 岩土工程学报. 2020(08): 1401-1410 . 本站查看

    Other cited types(14)

Catalog

    Article views (150) PDF downloads (49) Cited by(36)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return