Citation: | LI Jiang-shan, JIANG Wen-hao, GE Shang-qi, HUANG Xiao, CHENG Xin, WAN Yong. Coupling model for consolidation and contaminant transport in compactedclay liners under non-isothermal condition[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2071-2080. DOI: 10.11779/CJGE202211013 |
[1] |
陈云敏. 环境土工基本理论及工程应用[J]. 岩土工程学报, 2014, 36(1): 1–46. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401003.htm
CHEN Yun-min. A fundamental theory of environmental geotechnics and its application[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 1–46. (inChinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401003.htm
|
[2] |
SHACKELFORD C D. The ISSMGE Kerry Rowe Lecture: The role of diffusion in environmental geotechnics 1[J]. Canadian Geotechnical Journal, 2014, 51(11): 1219–1242. doi: 10.1139/cgj-2013-0277
|
[3] |
张春华, 吴家葳, 陈赟, 等. 基于污染物击穿时间的填埋场复合衬垫厚度简化设计方法[J]. 岩土工程学报, 2020, 42(10): 1841 –1848.
ZHANG Chun-hua, WU Jia-wei, CHEN Yun, et al. Simplified method for determination of thickness of composite liners based on contaminant breakthrough time[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1841–1848. (in Chinese)
|
[4] |
TOUZE-FOLTZ N, XIE H J, STOLTZ G. Performance issues of barrier systems for landfills: a review[J]. Geotextiles and Geomembranes, 2021, 49(2): 475-488. doi: 10.1016/j.geotexmem.2020.10.016
|
[5] |
FOOSE G J. Transit-time design for diffusion through composite liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(1): 590–601.
|
[6] |
陈云敏, 谢海建, 柯瀚, 等. 层状土中污染物的一维扩散解析解[J]. 岩土工程学报, 2006, 28(4): 521–524. doi: 10.3321/j.issn:1000-4548.2006.04.018
CHEN Yun-min, XIE Hai-jian, KE Han, et al. Analytical solution of contaminant diffusion through multi-layered soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 521–524. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.04.018
|
[7] |
张文杰, 黄依艺, 张改革. 填埋场污染物在有限厚度土层中一维对流–扩散–吸附解析解[J]. 岩土工程学报, 2013, 35(7): 1197–1201. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201307004.htm
ZHANG Wen-jie, HUANG Yi-yi, ZHANG Gai-ge. Analytical solution for 1D advection-diffusion-adsorption transport of landfill contaminants through a soil layer with finite thickness[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1197–1201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201307004.htm
|
[8] |
FENG S J, PENG M Q, CHEN Z L, et al. Transient analytical solution for one-dimensional transport of organic contaminants through GM/GCL/SL composite liner[J]. Science of the Total Environment, 2019, 650: 479–492. doi: 10.1016/j.scitotenv.2018.08.413
|
[9] |
PU H F, QIU J W, ZHANG R J, et al. Analytical solutions for organic contaminant diffusion in triple-layer composite liner system considering the effect of degradation[J]. Acta Geotechnica, 2020, 15(4): 907–921. doi: 10.1007/s11440-019-00783-0
|
[10] |
CALDER G V, STARK T D. Aluminum reactions and problems in municipal solid waste landfills[J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2010, 14(4): 258–265. doi: 10.1061/(ASCE)HZ.1944-8376.0000045
|
[11] |
JAFARI N H, STARK T D, THALHAMER T. Spatial and temporal characteristics of elevated temperatures in municipal solid waste landfills[J]. Waste Management, 2017, 59: 286–301. doi: 10.1016/j.wasman.2016.10.052
|
[12] |
吴珣, 施建勇, 何俊. 非等温条件下有机污染物在黏土衬垫中的扩散分析[J]. 水文地质工程地质, 2014, 41(3): 120–124. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201403024.htm
WU Xun, SHI Jian-yong, HE Jun. An analysis of organic contaminant diffusion through clay liner under the condition of transient temperature[J]. Hydrogeology & Engineering Geology, 2014, 41(3): 120–124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201403024.htm
|
[13] |
XIE H J, ZHANG C H, SEDIGHI M, et al. An analytical model for diffusion of chemicals under thermal effects in semi-infinite porous media[J]. Computers and Geotechnics, 2015, 69: 329–337. doi: 10.1016/j.compgeo.2015.06.012
|
[14] |
张春华. 填埋场复合衬垫污染物热扩散运移规律及其优化设计方法[D]. 杭州: 浙江大学, 2018.
ZHANG Chun-hua. Mechanisms for Contaminant Transport in Landfill Composite Liners under Thermal Effect and Its Optimization Design Method[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
|
[15] |
YAN H X, SEDIGHI M, XIE H J. Thermally induced diffusion of chemicals under steady-state heat transfer in saturated porous media[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119664. doi: 10.1016/j.ijheatmasstransfer.2020.119664
|
[16] |
PENG M Q, FENG S J, CHEN H X, et al. Analytical model for organic contaminant transport through GMB/CCL composite liner with finite thickness considering adsorption, diffusion and thermodiffusion[J]. Waste Management, 2021, 120(9): 448–458.
|
[17] |
PENG M Q, FENG S J, CHEN H X, et al. An analytical solution for organic pollutant diffusion in a triple-layer composite liner considering the coupling influence of thermal diffusion[J]. Computers and Geotechnics, 2021, 137: 104283. doi: 10.1016/j.compgeo.2021.104283
|
[18] |
MON E E, HAMAMOTO S, KAWAMOTO K, et al. Temperature effects on solute diffusion and adsorption in differently compacted Kaolin clay[J]. Environmental Earth Sciences, 2016, 75(7): 1–9.
|
[19] |
ROSANNE R, PASZKUTA M, TEVISSEN E, et al. Thermodiffusion in compact clays[J]. Journal of Colloid and Interface Science, 2003, 267(1): 194–203. doi: 10.1016/S0021-9797(03)00670-2
|
[20] |
ROSANNE M, PASZKUTA M, ADLER P M. Thermodiffusional transport of electrolytes in compact clays[J]. Journal of Colloid and Interface Science, 2006, 299(2): 797–805. doi: 10.1016/j.jcis.2006.03.002
|
[21] |
YU Y, ROWE R K. Modelling deformation and strains induced by waste settlement in a centrifuge test[J]. Canadian Geotechnical Journal, 2018, 55(8): 1116–1129. doi: 10.1139/cgj-2017-0558
|
[22] |
CHEN Y M, ZHAN T L T, WEI H Y, et al. Aging and compressibility of municipal solid wastes[J]. Waste Management, 2009, 29(1): 86–95. doi: 10.1016/j.wasman.2008.02.024
|
[23] |
LIU J Y, XU D M, ZHAO Y C, et al. Long-term monitoring and prediction for settlement and composition of refuse in Shanghai Laogang Municipal Landfill[J]. Environmental Management, 2004, 34(3): 441–448. doi: 10.1007/s00267-004-2762-2
|
[24] |
PU H F, FOX P J. Model for coupled large strain consolidation and solute transport in layered soils[J]. International Journal of Geomechanics, 2016, 16(2): 04015064. doi: 10.1061/(ASCE)GM.1943-5622.0000539
|
[25] |
YAN H X, WU J W, THOMAS H R, et al. Analytical model for coupled consolidation and diffusion of organic contaminant transport in triple landfill liners[J]. Geotextiles and Geomembranes, 2021, 49(2): 489–499. doi: 10.1016/j.geotexmem.2020.10.019
|
[26] |
XIE H, YAN H, FENG S, et al. An analytical model for contaminant transport in landfill composite liners considering coupled effect of consolidation, diffusion, and degradation[J]. Environmental Science & Pollution Research, 2016, 23(19): 1–14.
|
[27] |
田改垒, 张志红. 考虑热效应的污染物在土中扩散、渗透和固结耦合模型[J]. 岩土工程学报, 2022, 44(2): 278–287. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202202009.htm
TIAN Gai-lei, ZHANG Zhi-hong. Coupled model for contaminant diffusion, osmosis and consolidation in soil considering thermal effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 278–287. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202202009.htm
|
[28] |
LEE J, FOX P J, LENHART J J. Investigation of consolidation-induced solute transport. I: Effect of consolidation on transport parameters[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(9): 1228–1238. doi: 10.1061/(ASCE)GT.1943-5606.0000047
|
[29] |
张志红, 许照刚, 杜修力. 吸附模式及固结变形对溶质运移规律的影响研究[J]. 土木工程学报, 2013, 46(1): 104– 111. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201301012.htm
ZHANG Zhi-hong, XU Zhao-gang, DU Xiu-li. Study on the effects of adsorption modes and consolidation deformation on solute transport[J]. China Civil Engineering Journal, 2013, 46(1): 104–111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201301012.htm
|
[30] |
PU H, FOX, P J, SHACKELFORD C D, et al. Assessment of consolidation-induced contaminant transport for compacted clay liner systems[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(3): 04015091.
|
[31] |
ALSHAWABKEH A N, RAHBAR N. Parametric study of one-dimensional solute transport in deformable porous media[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(8): 1001–1010.
|
[32] |
CHO W J, LEE J O, CHUN K S. The temperature effects on hydraulic conductivity of compacted bentonite[J]. Applied Clay Science, 1999, 14(1/2/3): 47-58.
|
[33] |
何俊, 胡晓瑾, 颜兴, 等. 黏土渗透性温度效应试验[J]. 水利水电科技进展, 2017, 37(3): 55–60. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201703009.htm
HE Jun, HU Xiao-jin, YAN Xing, et al. Experiments on temperature effect of hydraulic conductivity of compacted clay[J]. Advances in Science and Technology of Water Resources, 2017, 37(3): 55–60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201703009.htm
|
[34] |
张宇宁, 陈宇龙, 李博. 饱和黏土的一维热固结特性试验研究[J]. 东北大学学报(自然科学版), 2016, 37(12): 1794–1799. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201612026.htm
ZHANG Yu-ning, CHEN Yu-long, LI Bo. Experimental study of one-dimensional thermal consolidation of saturated clays[J]. Journal of Northeastern University (Natural Science), 2016, 37(12): 1794–1799. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201612026.htm
|
[35] |
费康, 戴迪, 付长郓. 热–力耦合作用下黏性土体积变形特性试验研究[J]. 岩土工程学报, 2019, 41(9): 1752–1758. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909023.htm
FEI Kang, DAI Di, FU Chang-yun. Experimental study on volume change behavior of clay subjected to thermo-mechanical loads[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1752–1758. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909023.htm
|
[36] |
SMITH D W. One-dimensional contaminant transport through a deforming porous medium: theory and a solution for a quasi-steady-state problem[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(8): 693–722.
|
[37] |
尹铁锋, 刘干斌, 郭桢, 等. 竖井地基热排水固结理论初探[J]. 水文地质工程地质, 2014, 41(3): 41–46. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201403010.htm
YIN Tie-feng, LIU Gan-bin, GUO Zhen, et al. A preliminary study of the theory of consolidation by vertical thermal drain[J]. Hydrogeology & Engineering Geology, 2014, 41(3): 41–46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201403010.htm
|
[38] |
HARRIS K R, WOOLF L A. Pressure and temperature dependence of the self-diffusion coefficient of water and oxygen-18 water[J]. Journal of the Chemical Society, 1980, 76: 377–385.
|
[39] |
ROWE R K. Short- and long-term leakage through composite liners. The 7th Arthur casagrande lecture[J]. Canadian Geotechnical Journal, 2012, 49(2): 141–169.
|
[1] | JIA Wei, LI Yao, GUO Zhanglong, TIAN Chaopeng. Model tests on soil deformation of surrounding soil of Luochuan tunnel[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 164-169. DOI: 10.11779/CJGE2024S10021 |
[2] | HAN Xingbo, CHEN Ziming, YE Fei, LIANG Xiaoming, FENG Haolan, XIA Tianhan. Model tests on disturbance characteristics of surrounding rock of loess shield tunnels during excavation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 968-977. DOI: 10.11779/CJGE20230054 |
[3] | ZHOU Yang, LAI Hongpeng, WANG Xingguang, KONG Jun, LI Zhilei, HONG Qiuyang. Experimental study on improving mechanical characteristics of initial support structure of deep buried large-span tunnels with long bolts or cables[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 853-863. DOI: 10.11779/CJGE20221533 |
[4] | HUANG Dawei, ZHAO Zhiqi, XU Changjie, LUO Wenjun, GENG Daxin, SHI Yufeng. Experimental study on influences of side grouting on deformation of shield tunnels under loads[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 510-518. DOI: 10.11779/CJGE20221422 |
[5] | ZHANG Yu-ting, AN Xiao-yu, JIN Ya-fei. Centrifugal model tests on settlement of structures caused by tunnel excavation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 54-57. DOI: 10.11779/CJGE2022S2012 |
[6] | XU Jing-min, ZHANG Ding-wen, LIU Song-yu. Tunneling-induced sandy ground deformation affected by surface framed structures[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 602-612. DOI: 10.11779/CJGE202204002 |
[7] | LIU Xue-zeng, LAI Hao-ran, SANG Yun-long, DUAN Jun-ming, DING Shuang. Model tests on effect of bonded steel plate reinforcement of shield tunnels under different deformation conditions[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2115-2123. DOI: 10.11779/CJGE202011017 |
[8] | CAI Yi, ZHANG Cheng-ping, MIN Bo, YANG Gong-biao. Deformation characteristics of ground with voids induced by shallow metro tunnelling[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 534-543. DOI: 10.11779/CJGE201903016 |
[9] | LI Jiao-yang, LIU Wei, ZOU Jin-jie, ZHAO Yu, GONG Xiao-nan. Large-scale model tests on face instability of shallow shield tunnels in sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 562-567. DOI: 10.11779/CJGE201803022 |
[10] | WANG Xiu-ying, TAN Zhong-sheng, LI Jian, DU Chao-wei. Laboratory tests on mechanical characteristics of fully and partially wrapped waterproof systems for tunnel lining[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 654-659. |