Citation: | XU Jing-min, ZHANG Ding-wen, LIU Song-yu. Tunneling-induced sandy ground deformation affected by surface framed structures[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 602-612. DOI: 10.11779/CJGE202204002 |
[1] |
钱七虎. 迎接我国城市地下空间开发高潮[J]. 岩土工程学报, 1998, 20(1): 112–113. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC801.025.htm
QIAN Qi-hu. Meet the climax of urban underground space development in China[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(1): 112–113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC801.025.htm
|
[2] |
阳军生, 刘宝琛. 城市隧道施工引起的地表移动及变形[M]. 北京: 中国铁道出版社, 2002.
YANG Jun-sheng, LIU Bao-chen. Surface Movement and Deformation Caused by Urban Tunnel Construction[M]. Beijing: China Railway Publishing House, 2002. (in Chinese)
|
[3] |
周先成, 俞剑, 黄茂松. 隧道开挖对有接头地埋管线影响的工程评价方法[J]. 岩土工程学报, 2020, 42(1): 181–187. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001028.htm
ZHOU Xian-cheng, YU Jian, HUANG Mao-song. Evaluation method for effect of tunneling on underground jointed pipelines[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 181–187. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001028.htm
|
[4] |
王哲, 吴淑伟, 姚王晶, 等. 盾构穿越既有桥梁桩基磨桩技术的研究[J]. 岩土工程学报, 2020, 42(1): 117–125. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001019.htm
WANG Zhe, WU Shu-wei, YAO Wang-jing, et al. Grinding pile technology of shield tunnels crosssing pile foundation of existing bridges[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 117–125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001019.htm
|
[5] |
陈仁朋, 曾巍, 吴怀娜, 等. 盾构隧道下穿引起砌体结构建筑沉降损伤实例研究[J]. 岩土工程学报, 2020, 42(12): 2301–2307. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012022.htm
CHEN Ren-peng, ZENG Wei, WU Huai-na, et al. Case study of tunneling-induced settlement and damage of masonry buildings[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2301–2307. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012022.htm
|
[6] |
PECK R B. Deep excavations and tunnelling in soft ground[C]// ICSMFE Proceeding of 7th International Conference SMFE State of the Art Volume, 1969, Mexico.
|
[7] |
LOGANATHAN N, POULOS H G. Analytical prediction for tunneling-induced ground movements in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(9): 846–856. doi: 10.1061/(ASCE)1090-0241(1998)124:9(846)
|
[8] |
LEE K M, ROWE R K, LO K Y. Subsidence owing to tunneling: I estimating the gap parameter[J]. Canadian Geotechnical Journal, 1992, 29(6): 929–940. doi: 10.1139/t92-104
|
[9] |
VERRUIJT A, BOOKER J R. Surface settlements due to deformation of a tunnel in an elastic half plane[J]. Géotechnique, 1996, 46(4): 753–756. doi: 10.1680/geot.1996.46.4.753
|
[10] |
张治国, 杨轩, 赵其华, 等. 盾构隧道开挖引起地层位移计算理论的对比与修正[J]. 岩土工程学报, 2016, 38(增刊2): 272–279. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S2045.htm
ZHANG Zhi-guo, YANG Xuan, ZHAO Qi-hua, et al. Assessment and modification of traditional methods for ground displacements induced by shield tunneling[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S2): 272–279. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S2045.htm
|
[11] |
房倩, 杜建明, 王赶, 等. 砂土隧道开挖地层变形规律及影响因素分析[J]. 隧道与地下工程灾害防治, 2020, 2(3): 67–76. https://www.cnki.com.cn/Article/CJFDTOTAL-SDZH202003009.htm
FANG Qian, DU Jian-ming, WANG Gan, et al. Stratum deformation laws and influence factors analysis of tunnel excavation in sand[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(3): 67–76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDZH202003009.htm
|
[12] |
邓崴, 潘建平, 曾雅钰琼. 砂黏复合地层盾构隧道施工地表横向沉降分析[J]. 科学技术与工程, 2019, 19(18): 271-275. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201918041.htm
DENG Wei, PAN Jian-ping, ZENG Yayuqiong. Analysis on the lateral subsidence of surface in shield tunneling construction of sandclay composite stratum[J]. Science Technology and Engineering, 2019, 19(18): 271–275. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201918041.htm
|
[13] |
王正兴, 缪林昌, 王冉冉, 等. 砂土中隧道施工引起土体内部沉降规律特征的室内模型试验研究[J]. 土木工程学报, 2014, 47(5): 133–139. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201405020.htm
WANG Zheng-xing, MIAO Lin-chang, WANG Ran-ran, et al. Physical model study on subsurface settlement by tunnelling in sand[J]. China Civil Engineering Journal, 2014, 47(5): 133–139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201405020.htm
|
[14] |
王海涛, 金慧, 涂兵雄, 等. 砂土地层地铁盾构隧道施工对地层沉降影响的模型试验研究[J]. 中国铁道科学, 2017, 38(6): 70–78. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201706011.htm
WANG Hai-tao, JIN Hui, TU Bing-xiong, et al. Model test study on influence of ground settlement caused by shield tunnel construction in sand stratum[J]. China Railway Science, 2017, 38(6): 70–78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201706011.htm
|
[15] |
王昊统, 吴雪峰, 杨忠年, 等. 硬岩地区浅埋暗挖隧道施工地表沉降特征模型试验研究[J]. 科学技术与工程, 2020, 20(31): 13001–13008. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202031048.htm
WANG Hao-tong, WU Xue-feng, YANG Zhong-nian, et al. Model test study on ground settlement characteristics caused by shallow buried tunnel construction in hard rock area[J]. Science Technology and Engineering, 2020, 20(31): 13001–13008. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202031048.htm
|
[16] |
ZHENG G, GE L B, ZHANG T Q, et al. Volumetric behaviour of subsurface ground due to tunnelling in completely drained granular soil[J]. Computers and Geotechnics, 2019, 116: 103217.
|
[17] |
MARSHALL A M, FARRELL R, KLAR A, et al. Tunnels in sands: the effect of size, depth and volume loss on greenfield displacements[J]. Géotechnique, 2012, 62(5): 385–399.
|
[18] |
FRANZA A, MARSHALL A M, ZHOU B. Greenfield tunnelling in sands: the effects of soil density and relative depth[J]. Géotechnique, 2019, 69(4): 297–307.
|
[19] |
POTTS D M, ADDENBROOKE T I. A structure's influence on tunnelling-induced ground movements[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 1997, 125(2): 109–125.
|
[20] |
FARRELL R. Tunnelling in Sands and the Response of Buildings[D]. Cambridge: Department of Civil Engineering, University of Cambridge, 2010.
|
[21] |
RITTER S, GIARDINA G, DEJONG M J, et al. Influence of building characteristics on tunnelling-induced ground movements[J]. Géotechnique, 2017, 67(10): 926–937.
|
[22] |
ELLIS E, COX C, YU H S, AINSWORTH A, BAKER N. A new geotechnical centrifuge at the University of Nottingham, UK[C]// 6th International Conference of Physical Modelling in Geotechnics: ICPMG'06, 2006, Hong Kong, Taylor & Francis Group, London.
|
[23] |
ZHOU B. Tunnelling-Induced Ground Displacements in Sand[D]. Nottingham: Department of Civil Engineering, University of Nottingham, 2014.
|
[24] |
XU J, MARSHALL A M, FRANZA A, BOLDINI D AMOROSI A. The response of framed buildings on raft foundations to tunnelling: A centrifuge and numerical modelling study[C]// 17th European Conf. on Soil Mechanics and Geotechnical Engineering, 2019, London.
|
[25] |
WHITE D J, TAKE W A, BOLTON M D. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry[J]. Géotechnique, 2003, 53(7): 619–631.
|
[26] |
XU J M, FRANZA A, MARSHALL A M. Response of framed buildings on raft foundations to tunneling[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(11): 04020120.
|
[27] |
XU J M, FRANZA A, MARSHALL A M, et al. Tunnel–framed building interaction: comparison between raft and separate footing foundations[J]. Géotechnique, 2021, 71(7): 631–644.
|
[28] |
BOLTON M D. The strength and dilatancy of sands[J]. Géotechnique, 1986, 36(1): 65–78.
|