Citation: | LI Da-yong, HOU Xin-yu, ZHANG Yu-kun, GAO Yu-feng. Effects of relative densities on mechanical characteristics of interface between sand and suction caisson during penetration[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1598-1607. DOI: 10.11779/CJGE202209004 |
[1] |
李大勇, 张雨坤, 高玉峰, 等. 中粗砂中吸力锚的负压沉贯模型试验研究[J]. 岩土工程学报, 2012, 34(12): 2277–2283. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201212022.htm
LI Da-yong, ZHANG Yu-kun, GAO Yu-feng, et al. Model tests on penetration of suction anchors in medium-coarse sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2277–2283. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201212022.htm
|
[2] |
王胤, 朱兴运, 杨庆. 考虑砂土渗透性变化的吸力锚沉贯及土塞特性研究[J]. 岩土工程学报, 2019, 41(1): 184–190. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901025.htm
WANG Yin, ZHU Xing-yun, YANG Qing. Installation of suction caissons and formation of soil plug considering variation of permeability of sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 184–190. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901025.htm
|
[3] |
丁红岩, 张浦阳. 海上吸力锚负压下沉渗流场的特性分析[J]. 海洋技术, 2003, 22(4): 44–48. doi: 10.3969/j.issn.1003-2029.2003.04.011
DING Hong-yan, ZHANG Pu-yang. Suction penetration seepage field's characteristics of suction anchor[J]. Ocean Technology, 2003, 22(4): 44–48. (in Chinese) doi: 10.3969/j.issn.1003-2029.2003.04.011
|
[4] |
HOULSBY G T, BYRNE B W. Design procedures for installation of suction caissons in sand[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2005, 158(3): 135–144. doi: 10.1680/geng.2005.158.3.135
|
[5] |
HOULSBY G T, BYRNE B W. Design procedures for installation of suction caissons in clay and other materials[J]. Proceedings of the Institution of Civil Engineers- Geotechnical Engineering, 2005, 158(2): 75–82. doi: 10.1680/geng.2005.158.2.75
|
[6] |
MEHRAVAR M, HARIRECHE O, FARAMARZI A, et al. Modelling the variation of suction pressure during caisson installation in sand using FLAC3D[J]. Ships and Offshore Structures, 2017, 12(7): 893–899. doi: 10.1080/17445302.2015.1051311
|
[7] |
李大勇, 吴宇旗, 张雨坤, 等. 砂土中桶形基础吸力值的设定范围[J]. 岩土力学, 2017, 38(4): 985–992, 1002. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201704010.htm
LI Da-yong, WU Yu-qi, ZHANG Yu-kun, et al. Determination of suction range for penetration of suction caissons in sand[J]. Rock and Soil Mechanics, 2017, 38(4): 985–992, 1002. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201704010.htm
|
[8] |
李大勇, 吴宇旗, 张雨坤. 砂土中吸力式桶形基础竖向承载性状研究[J]. 山东科技大学学报(自然科学版), 2016, 35(3): 33–39. doi: 10.3969/j.issn.1672-3767.2016.03.005
LI Da-yong, WU Yu-qi, ZHANG Yu-kun. Vertical bearing capacity of suction caisson foundation in sand[J]. Journal of Shandong University of Science and Technology (Natural Science), 2016, 35(3): 33–39. (in Chinese) doi: 10.3969/j.issn.1672-3767.2016.03.005
|
[9] |
CHEN F, LIAN J J, WANG H J, et al. Large-scale experimental investigation of the installation of suction caissons in silt sand[J]. Applied Ocean Research, 2016, 60: 109–120. doi: 10.1016/j.apor.2016.09.004
|
[10] |
HARIRECHE O, MEHRAVAR M, ALANI A M. Suction caisson installation in sand with isotropic permeability varying with depth[J]. Applied Ocean Research, 2013, 43: 256–263. doi: 10.1016/j.apor.2013.10.008
|
[11] |
闫澍旺, 霍知亮, 楚剑, 等. 黏土中桶形基础负压下沉阻力及土塞发展试验[J]. 天津大学学报(自然科学与工程技术版), 2016, 49(10): 1027–1033. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201610004.htm
YAN Shu-wang, HUO Zhi-liang, CHU Jian, et al. Experiment on penetration resistance and soil plug development during suction caisson penetration in soft clay[J]. Journal of Tianjin University (Science and Technology), 2016, 49(10): 1027–1033. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201610004.htm
|
[12] |
LIU R, MA W G, QI Y, et al. Experimental studies on the drag reduction effect of bucket foundation installation under suction pressure in sand[J]. Ships and Offshore Structures, 2019, 14(5): 421–431. doi: 10.1080/17445302.2018.1500188
|
[13] |
NARDELLI A, CACCIARI P P, FUTAI M M. Sand-concrete interface response: the role of surface texture and confinement conditions[J]. Soils and Foundations, 2019, 59(6): 1675–1694. doi: 10.1016/j.sandf.2019.05.013
|
[14] |
TIWARI B, AL-ADHADH A R. Influence of relative density on static soil–structure frictional resistance of dry and saturated sand[J]. Geotechnical and Geological Engineering, 2014, 32(2): 411–427. doi: 10.1007/s10706-013-9723-6
|
[15] |
TEJCHMAN J, WU W. Experimental and numerical study of sand-steel interfaces[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19(8): 513–536. doi: 10.1002/nag.1610190803
|
[16] |
JITSANGIAM P, PRA-AI S, BOULON M, et al. Characterization of a soil–rough structure interface using direct shear tests with varying cyclic amplitude and loading sequences under a large cyclic testing cycle condition[J]. Acta Geotechnica, 2021, 17(5): 1829–1845.
|
[17] |
郭聚坤, 寇海磊, 许泓霖, 等. 桩–海洋黏土界面剪切性状试验研究[J]. 长江科学院院报, 2019, 36(4): 104–108, 117. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201904024.htm
GUO Ju-kun, KOU Hai-lei, XU Hong-lin, et al. Experimental study on shear behaviors of interface between pile and marine clay[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(4): 104–108, 117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201904024.htm
|
[18] |
祁越, 刘润, 练继建. 无黏性土中筒型基础负压下沉模型试验[J]. 岩土力学, 2018, 39(1): 139–150. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801018.htm
QI Yue, LIU Run, LIAN Ji-jian. Model test of bucket foundation suction installation in cohesionless soil[J]. Rock and Soil Mechanics, 2018, 39(1): 139–150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801018.htm
|
[19] |
袁中立, 秦延龙, 唐海燕. 浅海桶形基础平台[M]. 北京: 石油工业出版社, 2010.
YUAN Zhong-li, QIN Yan-long, TANG Hai-yan. Bucket Foundation Platform in Shallow Sea[M]. Beijing: Petroleum Industry Press, 2010. (in Chinese)
|
[1] | WANG Haiyang, CHEN Pingshan, HE Liping. Model tests on consolidation of soft foundation by deep cement mixing method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 170-174. DOI: 10.11779/CJGE2024S10023 |
[2] | LIU Song-yu, CAI Guang-hua, DU Guang-yin, WANG Liang. Model tests on carbonated reactive MgO mixing piles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 136-139. DOI: 10.11779/CJGE2017S2034 |
[3] | MA Cong, TAN Yue-hu, LI Er-bing, YANG Meng, TAN Xing-wang. Anti-permeability of soil-cement mixing piles under coral reef geological conditions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 788-792. DOI: 10.11779/CJGE201404027 |
[4] | ZHAO Chun-feng, ZOU Yu-wan, ZHAO Cheng, XIE Xiao-dong, ZHOU Yu-shi. Experimental research on strength of five-axis cement-soil mixed piles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 376-381. DOI: 10.11779/CJGE201402015 |
[5] | LI Ran, LIU Run, XU Yu, LIN Min-bo. Influence factor analysis of cement mixing pile method in treating vehicle bumping at bridge head in soft soil foundation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 725-729. |
[6] | LI Guo-wei, JIANG Wei, WU Yu-cai, WEI Shu-hong, LUO Zeng-yi, DAI Jian. Field tests on detecting cement mixing piles by static cone penetration tests in reserved hole[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1289-1296. |
[7] | HUO Jing, ZHU Jin, HU Zheng-liang, LI Hai-bing, HUI Yong-chuan. Application of deep mixing cement soil mixing wall (CSM )[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 666-670. |
[8] | YUAN Ju-yun, JING Lu, LI Yang, KANG Zhu-liang. Applicatin of desulphogypsum soil cemedine to deep mixing piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 16-21. |
[9] | LIU Songyu, ZHU Zhiduo, XI Peisheng, YI Yaolin. Comparison between T-shaped deep mixing method and traditional deep mixing method for soft ground improvement[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1059-1068. |
[10] | HE Kaisheng. Study of design methods of deep cement-soil mixing piles[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(1): 31-35. |