Citation: | TAO Lian-jin, WANG Zhi-gang, SHI Cheng, AN Shao, JIA Zhi-bo. Analytical solution for longitudinal response of pipeline structure under fault dislocation based on Pasternak foundation model[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1577-1586. DOI: 10.11779/CJGE202209002 |
[1] |
SHEN Y S, GAO B, YANG X M, et al. Seismic damage mechanism and dynamic deformation characteristic analysis of mountain tunnel after Wenchuan earthquake[J]. Engineering Geology, 2014, 180: 85–98. doi: 10.1016/j.enggeo.2014.07.017
|
[2] |
HSU L P, WENG S L. The geological treatment for railway tunnel after seismic damage–a case study of Sanyi No. 1 railway tunnel[J]. Treat Technol Engineering Geology Tunnel, 2000: 125–153.
|
[3] |
崔光耀, 王明年, 于丽, 等. 汶川地震公路隧道洞口结构震害分析及震害机理研究[J]. 岩土工程学报, 2013, 35(6): 1084–1091. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201306015.htm
CUI Guang-yao, WANG Ming-nian, YU Li, et al. Seismic damage and mechanism of portal structure of highway tunnels in Wenchuan Earthquake[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1084–1091. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201306015.htm
|
[4] |
高波, 王峥峥, 袁松, 等. 汶川地震公路隧道震害启示[J]. 西南交通大学学报, 2009, 44(3): 336–341, 374. doi: 10.3969/j.issn.0258-2724.2009.03.005
GAO Bo, WANG Zheng-zheng, YUAN Song, et al. Lessons learnt from damage of highway tunnels in Wenchuan earthquake[J]. Journal of Southwest Jiaotong University, 2009, 44(3): 336–341, 374. (in Chinese) doi: 10.3969/j.issn.0258-2724.2009.03.005
|
[5] |
WANG W L, WANG T T, SU J J, et al. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake[J]. Tunnelling and Underground Space Technology, 2001, 16(3): 133–150. doi: 10.1016/S0886-7798(01)00047-5
|
[6] |
DALGIÇ S. Tunneling in squeezing rock, the bolu tunnel, Anatolian motorway, Turkey[J]. Engineering Geology, 2002, 67(1/2): 73–96. http://www.sciencedirect.com/science/article/pii/S0013795202001461
|
[7] |
TAKADA S, HASSANI N, FUKUDA K. A new proposal for simplified design of buried steel pipes crossing active faults[J]. Earthquake Engineering & Structural Dynamics, 2001, 30(8): 1243–1257. http://ci.nii.ac.jp/naid/130003801718
|
[8] |
ZHANG Y, TAO L J, ZHAO X, et al. An analytical model for face stability of shield tunnel in dry cohesionless soils with different buried depth[J]. Computers and Geotechnics, 2022, 142: 104565. doi: 10.1016/j.compgeo.2021.104565
|
[9] |
YANG Y R, HU J C, LIN M L. Evolution of coseismic fault-related folds induced by the Chi-Chi earthquake: a case study of the Wufeng site, Central Taiwan by using 2D distinct element modeling[J]. Journal of Asian Earth Sciences, 2014, 79: 130–143. doi: 10.1016/j.jseaes.2013.08.034
|
[10] |
杨步云, 陈俊涛, 肖明. 跨断层地下隧洞衬砌结构地震响应及损伤机理研究[J]. 岩土工程学报, 2020, 42(11): 2078–2087. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202011017.htm
YANG Bu-yun, CHEN Jun-tao, XIAO Ming. Seismic response and damage mechanism of lining structures for underground tunnels across fault[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2078–2087. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202011017.htm
|
[11] |
YU H T, ZHANG Z W, CHEN J T, et al. Analytical solutionfor longitudinal seismic response of tunnel liners with sharp stiffness transition[J]. Tunnelling and Underground Space Technology, 2018, 77: 103–114. doi: 10.1016/j.tust.2018.04.001
|
[12] |
林存刚, 黄茂松. 基于Pasternak地基的盾构隧道开挖非连续地下管线的挠曲[J]. 岩土工程学报, 2019, 41(7): 1200–1207. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907004.htm
LIN Cun-gang, HUANG Mao-song. Deflections of discontinuous buried pipelines induced by shield tunnelling based on Pasternak foundation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1200–1207. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907004.htm
|
[13] |
徐日庆, 程康, 应宏伟, 等. 考虑埋深与剪切效应的基坑卸荷下卧隧道的形变响应[J]. 岩土力学, 2020, 41(增刊1): 195–207. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2020S1023.htm
XU Ri-qing, CHENG Kang, YING Hong-wei, et al. Deformation response of a tunnel under foundation pit unloading considering buried depth and shearing effect[J]. Rock and Soil Mechanics, 2020, 41(S1): 195–207. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2020S1023.htm
|
[14] |
刘国钊, 乔亚飞, 何满潮, 等. 活动性断裂带错动下隧道纵向响应的解析解[J]. 岩土力学, 2020, 41(3): 923–932. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003023.htm
LIU Guo-zhao, QIAO Ya-fei, HE Man-chao, et al. An analytical solution of longitudinal response of tunnels under dislocation of active fault[J]. Rock and Soil Mechanics, 2020, 41(3): 923–932. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003023.htm
|
[15] |
刘学增, 王煦霖, 林亮伦. 75°倾角正断层黏滑错动对公路隧道影响的模型试验研究[J]. 岩石力学与工程学报, 2013, 32(8): 1714–1720. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308026.htm
LIU Xue-zeng, WANG Xu-lin, LIN Liang-lun. Model experiment on effect of normal fault with 75°dip angle stick-slip dislocation on highway tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1714–1720. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308026.htm
|
[16] |
刘学增, 王煦霖, 林亮伦. 45°倾角正断层黏滑错动对隧道影响试验分析[J]. 同济大学学报(自然科学版), 2014, 42(1): 44–50. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201401009.htm
LIU Xue-zeng, WANG Xu-lin, LIN Liang-lun. Modeling experiment on effect of normal fault with 45° dip angle stick-slip dislocation on tunnel[J]. Journal of Tongji University (Natural Science), 2014, 42(1): 44–50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201401009.htm
|
[17] |
刘学增, 刘金栋, 李学锋, 等. 逆断层铰接式隧道衬砌的抗错断效果试验研究[J]. 岩石力学与工程学报, 2015, 34(10): 2083–2090. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201510018.htm
LIU Xue-zeng, LIU Jin-dong, LI Xue-feng, et al. Experimental research on effect of anti-dislocation of highway tunnel lining with hinge joints in thrust fault[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(10): 2083–2090. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201510018.htm
|
[18] |
王道远, 李粮余, 袁金秀, 等. 逆断层黏滑错动下隧道抗错断力学机制研究[J]. 铁道工程学报, 2019, 36(6): 62–66. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201906013.htm
WANG Dao-yuan, LI Liang-yu, YUAN Jin-xiu, et al. Research on the mechanical response of dislocation fracture of tunnel under stick-slip of reverse fault[J]. Journal of Railway Engineering Society, 2019, 36(6): 62–66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201906013.htm
|
[19] |
孙飞, 张志强, 易志伟. 正断层黏滑错动对地铁隧道结构影响的模型试验研究[J]. 岩土力学, 2019, 40(8): 3037–3044, 3053. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908020.htm
SUN Fei, ZHANG Zhi-qiang, YI Zhi-wei. Model experimental study of the influence of normal fault with stick-slip dislocation on subway tunnel structure[J]. Rock and Soil Mechanics, 2019, 40(8): 3037–3044, 3053. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908020.htm
|
[20] |
KIANI M, AKHLAGHI T, GHALANDARZADEH A. Experimental modeling of segmental shallow tunnels in alluvial affected by normal faults[J]. Tunnelling and Underground Space Technology, 2016, 51: 108–119. doi: 10.1016/j.tust.2015.10.005
|
[21] |
DEMIRCI H E, BHATTACHARYA S, KARAMITROS D, et al. Experimental and numerical modelling of buried pipelines crossing reverse faults[J]. Soil Dynamics and Earthquake Engineering, 2018, 114: 198–214. doi: 10.1016/j.soildyn.2018.06.013
|
[22] |
马亚丽娜, 崔臻, 盛谦, 等. 正断层错动对围岩–衬砌体系响应影响的离散–连续耦合模拟研究[J]. 岩土工程学报, 2020, 42(11): 2088–2097. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202011018.htm
MA Yalina, CUI Zhen, SHENG Qian, et al. Influences of normal fault dislocation on response of surrounding rock and lining system based on discrete-continuous coupling simulation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2088–2097. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202011018.htm
|
[23] |
安韶, 陶连金, 边金, 等. 跨活动断裂带城市浅埋地铁隧道结构两阶段设计方法研究[J]. 中南大学学报(自然科学版), 2020, 51(9): 2558–2570. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202009021.htm
AN Shao, TAO Lian-jin, BIAN Jin, et al. Study on two-level design method of urban shallow subway tunnel structure crossing active fault[J]. Journal of Central South University (Science and Technology), 2020, 51(9): 2558–2570. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202009021.htm
|
[24] |
BAZIAR M H, NABIZADEH A, MEHRABI R, et al. Evaluation of underground tunnel response to reverse fault rupture using numerical approach[J]. Soil Dynamics and Earthquake Engineering, 2016, 83: 1–17. doi: 10.1016/j.soildyn.2015.11.005
|
[25] |
汪振, 钟紫蓝, 黄景琦, 等. 走滑断层错动下山岭隧道关键断面变形及损伤演化[J]. 建筑结构学报, 2020, 41(增刊1): 425–433. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2020S1048.htm
WANG Zhen, ZHONG Zi-lan, HUANG Jing-qi, et al. Deformation and damage evolution of critical cross section of mountain tunnels under strike-slip fault movement[J]. Journal of Building Structures, 2020, 41(S1): 425–433. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2020S1048.htm
|
[26] |
ZHANG L S, ZHAO X B, YAN X Z, et al. A new finite element model of buried steel pipelines crossing strike-slip faults considering equivalent boundary springs[J]. Engineering Structures, 2016, 123: 30–44. doi: 10.1016/j.engstruct.2016.05.042
|
[27] |
耿萍, 曾冠雄, 郭翔宇, 等. 近场脉冲地震作用下穿越断层带隧道地震响应[J]. 中国公路学报, 2020, 33(5): 122–131. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202005011.htm
GENG Ping, ZENG Guan-xiong, GUO Xiang-yu, et al. Seismic response of tunnel structures passing through fault zone under near-field pulsed earthquakes[J]. China Journal of Highway and Transport, 2020, 33(5): 122–131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202005011.htm
|
[28] |
FADAEE M, FARZANEGANPOUR F, ANASTASOPOULOS I. Response of buried pipeline subjected to reverse faulting[J]. Soil Dynamics and Earthquake Engineering, 2020, 132: 106090. http://www.sciencedirect.com/science/article/pii/S0267726119303781
|
[29] |
PASTERNAK P L. On a new method of analysis of an elastic foundation by means of two foundation constants[C]// Cosudarstrennoe Izd Lit po Stroit i Arkhitekture, Moscow, USSR 1954.
|
[30] |
CAI Q P, NG C W W. Analytical approach for estimating ground deformation profile induced by normal faulting in undrained clay[J]. Canadian Geotechnical Journal, 2013, 50(4): 413–422. http://d.wanfangdata.com.cn/periodical/168945325ce21718e8d4fb20910e6d18
|
[31] |
AHMED I. Pipeline Response to Excavation-Induced Ground Movements[D]. Cornell: Cornell University, 1990.
|
[32] |
ROBOSKI J, FINNO R J. Distributions of ground movements parallel to deep excavations in clay[J]. Canadian Geotechnical Journal, 2006, 43(1): 43–58.
|
[33] |
LOUKIDIS D, BOUCKOVALAS G D, PAPADIMITRIOU A G. Analysis of fault rupture propagation through uniform soil cover[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(11/12): 1389–1404. http://www.sciencedirect.com/science/article/pii/S0267726109000827
|
[34] |
TANAHASHI H. Formulas for an infinitely long bernoulli-Euler beam on the Pasternak model[J]. Soils and Foundations, 2004, 44(5): 109–118. http://www.jstage.jst.go.jp/A_PRedirectJournalInit?sryCd=sandf1995&noVol=44&noIssue=5&kijiCd=44_5_109&screenID=AF06S010
|
[35] |
YU J, ZHANG C R, HUANG M S. Soil-pipe interaction due to tunnelling: assessment of Winkler modulus for underground pipelines[J]. Computers and Geotechnics, 2013, 50: 17–28. http://or.nsfc.gov.cn/bitstream/00001903-5/73948/1/1000004995705.pdf
|
[36] |
LIU X Z, LI X F, SANG Y L, et al. Experimental study on normal fault rupture propagation in loose strata and its impact on mountain tunnels[J]. Tunnelling and Underground Space Technology, 2015, 49: 417–425. http://www.onacademic.com/detail/journal_1000038099248410_d5aa.html
|
[1] | JIANG Xuehui, YAN Jianwei, LUO Wenjun, LIU Tianyu, XU Changjie. Analytical solution for equivalent stiffness of shield tunnels under combined action of longitudinal channel steel and axial force[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2166-2173. DOI: 10.11779/CJGE20230650 |
[2] | LIANG Jianwen, LI Dongqiao. Longitudinal seismic design of T-type underground precast utility tunnels[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1635-1643. DOI: 10.11779/CJGE20220691 |
[3] | FU Yanbin, WANG Fudao, LU Andian, ZHANG Xiaolong, HONG Chengyu, XIAO Hui. Analytical solution to longitudinal settlement of segments of subsea shield tunnels in fault fracture zones and its application[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1393-1401. DOI: 10.11779/CJGE20220507 |
[4] | YU Haitao, WEI Yibo. Analytical solution for longitudinal seismic response of tunnels with segmental flexible joints crossing faults[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 912-920. DOI: 10.11779/CJGE20220315 |
[5] | CUI Chunyi, XIN Yu, XU Chengshun, LIANG Zhimeng, WANG Benlong. Analytical solutions for horizontal dynamic response for pile groups based on Pasternak model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 893-902. DOI: 10.11779/CJGE20220235 |
[6] | YU Hai-tao, CHEN Gong. Analytical solution for seismic response of deep tunnels with arbitrary cross-section shapes[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1331-1337. DOI: 10.11779/CJGE202107019 |
[7] | CHEN Guo-xing, SUN Rui-rui, ZHAO Ding-feng, RUAN Bin. Longitudinal seismic response characteristics of seabed shield tunnels using submodeling analysis[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 1983-1991. DOI: 10.11779/CJGE201911002 |
[8] | YU Hai-tao, ZHANG Zheng-wei, LI Pan, HE Wei-guo, ZHAO Xu. Analytical solution for longitudinal seismic responses of long tunnels crossing soil-rock stratum[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1244-1250. DOI: 10.11779/CJGE201907008 |
[9] | YE Fei, YANG Peng-bo, MAO Jia-hua, MAO Yan-fei, CHEN Zhi, SUN Chang-hai. Longitudinal rigidity of shield tunnels based on model tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 83-90. DOI: 10.11779/CJGE201501009 |
[10] | CAI Yan-yan, YU Jin, ZHENG Chun-ting, QI Zhi-bo, SONG Bo-xue. Analytical solution for longitudinal dynamic complex impedance of tapered pile[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 392-398. |
1. |
赵飞翔,迟世春. 基于离散元的碎片尺寸随机的颗粒破碎模拟方法. 东北大学学报(自然科学版). 2023(03): 408-414 .
![]() | |
2. |
孙越,肖杨,周伟,刘汉龙. 钙质砂和石英砂压缩下的颗粒破碎与形状演化. 岩土工程学报. 2022(06): 1061-1068 .
![]() | |
3. |
唐怡,邱珍锋,邓文杰. 考虑单颗粒破碎模式的破碎特征与强度特性研究. 水利水电技术(中英文). 2022(07): 169-179 .
![]() | |
4. |
王嘉璐,张升,童晨曦,戴邵衡,黎章. 基于染色标定的钙质砂颗粒破碎级配转移矩阵试验研究. 岩土力学. 2022(08): 2222-2232 .
![]() | |
5. |
李学丰,李瑞杰,张军辉,王奇. 堆石料三维强度特性. 中国公路学报. 2020(09): 54-62 .
![]() |