• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FU Yanbin, WANG Fudao, LU Andian, ZHANG Xiaolong, HONG Chengyu, XIAO Hui. Analytical solution to longitudinal settlement of segments of subsea shield tunnels in fault fracture zones and its application[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1393-1401. DOI: 10.11779/CJGE20220507
Citation: FU Yanbin, WANG Fudao, LU Andian, ZHANG Xiaolong, HONG Chengyu, XIAO Hui. Analytical solution to longitudinal settlement of segments of subsea shield tunnels in fault fracture zones and its application[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1393-1401. DOI: 10.11779/CJGE20220507

Analytical solution to longitudinal settlement of segments of subsea shield tunnels in fault fracture zones and its application

More Information
  • Received Date: April 25, 2022
  • Available Online: February 23, 2023
  • The settlement control of tunnels in fault fracture zones is one of the key problems in the construction of subsea shield tunnels. The differential settlement of the tunnels induces the opening and dislocation of circumferential segment joint, increase of bolt stress and even leakage, which seriously affect the stability of tunnel structure and operation safety. Aiming at the longitudinal settlement of the subsea shield tunnels in the fault fracture zone stratum, through the analysis of the whole process of the tunnels crossing the fault fracture zone stratum, the theoretical formula for the normalized overlying loads is proposed, and the Taylor series expansion method is used to simplify the complex overburden loads into a multi-segment cubic polynomial function within 5% error. Combined with the Timoshenko beam theory, the analytical solution of the longitudinal settlement and internal force of the subsea shield tunnel segments is derived. Finally, the theoretical model is verified by an engineering example. The research shows that the settlement curve of the tunnel in the fault fracture zone shows surge section, slow increase section and sudden decrease section. The greater the dip angle of the fault fracture zone, the greater the differential settlement near the interface between the fault fracture zone and the normal surrounding rock. The fault fracture zone has a great influence on the settlement of the tunnels within the width of one time the fracture zone at the extension side. With the increase of the width of the fault fracture zone, the peak settlement of the tunnel in the fault fracture zone gradually increases and tends to be stable. When the width of the fault fracture zone exceeds 6 times the tunnel diameter, the peak settlement of the tunnel basically remains unchanged. The research results may provide a basis for the longitudinal settlement calculation and performance evaluation of subsea shield tunnels in fault fracture zones.
  • [1]
    张顶立. 海底隧道不良地质体及结构界面的变形控制技术[J]. 岩石力学与工程学报, 2007, 26(11): 2161-2169. doi: 10.3321/j.issn:1000-6915.2007.11.001

    ZHANG Dingli. Deformation control techniques of unfavorable geologic bodies and discontinuous surfaces in subsea tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(11): 2161-2169. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.11.001
    [2]
    BURFORD D. Heave of tunnels beneath the shell centre, London, 1959–1986[J]. Géotechnique, 1988, 38(1): 135-137. doi: 10.1680/geot.1988.38.1.135
    [3]
    王春浩. 超大断面黄土公路隧道围岩压力计算方法分析[J]. 现代隧道技术, 2015, 52(3): 175-181. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201503026.htm

    WANG Chunhao. Calculation method for surrounding rock pressure of a loess highway tunnel with an extra-large section[J]. Modern Tunnelling Technology, 2015, 52(3): 175-181. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201503026.htm
    [4]
    李鸿博, 郭小红. 公路连拱隧道土压力荷载的计算方法研究[J]. 岩土力学, 2009, 30(11): 3429-3434. doi: 10.3969/j.issn.1000-7598.2009.11.035

    LI Hongbo, GUO Xiaohong. Research on calculation metheods of earth pressure on Muti-arch tunnel for highway[J]. Rock and Soil Mechanics, 2009, 30(11): 3429-3434. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.11.035
    [5]
    铁路隧道设计规范: TB 10003—2016[S]. 北京: 中国铁道出版社, 2017.

    Code for Design of Railway Tunnel: TB 10003—2016[S]. Beijing: China Railway Publishing House, 2017. (in Chinese)
    [6]
    黎春林. 盾构隧道施工松动土压力计算方法研究[J]. 岩土工程学报, 2014, 36(9): 1714-1720. doi: 10.11779/CJGE201409019

    LI Chunlin. Method for calculating loosening earth pressure during construction of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1714-1720. (in Chinese) doi: 10.11779/CJGE201409019
    [7]
    TERZAGHI K. Theoretical Soil Mechanics[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1943.
    [8]
    王浩, 杨新安, 王斌, 等. 3洞小净距隧道围岩压力计算方法[J]. 中国铁道科学, 2020, 41(3): 68-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202003008.htm

    WANG Hao, YANG Xin'an, WANG Bin, et al. Calculation method for surrounding rock pressure of closely spaced triple tunnels[J]. China Railway Science, 2020, 41(3): 68-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202003008.htm
    [9]
    颉永斌, 董建华. 断层破碎带内隧道纵向受荷特征和变形分析[J]. 中国公路学报, 2021, 34(11): 211-224. doi: 10.3969/j.issn.1001-7372.2021.11.017

    XIE Yongbin, DONG Jianhua. Analysis of longitudinal deformation and stress characteristics of tunnel crossing fault fracture zone[J]. China Journal of Highway and Transport, 2021, 34(11): 211-224. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.11.017
    [10]
    ZHANG Z G, HUANG M S, WANG W D. Evaluation of deformation response for adjacent tunnels due to soil unloading in excavation engineering[J]. Tunnelling and Underground Space Technology, 2013, 38: 244-253. doi: 10.1016/j.tust.2013.07.002
    [11]
    LIANG R Z, XIA T D, HONG Y, et al. Effects of above-crossing tunnelling on the existing shield tunnels[J]. Tunnelling and Underground Space Technology, 2016, 58: 159-176. doi: 10.1016/j.tust.2016.05.002
    [12]
    LIU X, FANG Q, ZHANG D L, et al. Behaviour of existing tunnel due to new tunnel construction below[J]. Computers and Geotechnics, 2019, 110: 71-81. doi: 10.1016/j.compgeo.2019.02.013
    [13]
    WU H N, SHEN S L, LIAO S M, et al. Longitudinal structural modelling of shield tunnels considering shearing dislocation between segmental rings[J]. Tunnelling and Underground Space Technology, 2015, 50: 317-323. doi: 10.1016/j.tust.2015.08.001
    [14]
    LIAO S M, PENG F L, SHEN S L. Analysis of shearing effect on tunnel induced by load transfer along longitudinal direction[J]. Tunnelling and Underground Space Technology, 2008, 23(4): 421-430. doi: 10.1016/j.tust.2007.07.001
    [15]
    ZHANG D M, HUANG Z K, LI Z L, et al. Analytical solution for the response of an existing tunnel to a new tunnel excavation underneath[J]. Computers and Geotechnics, 2019, 108: 197-211.
    [16]
    陈祖煜. 土质边坡稳定分析: 原理·方法·程序[M]. 北京: 中国水利水电出版社, 2003.

    CHEN Zuyu. Soil Slope Stability Analysis: Theory, Methods and Programs[M]. Beijing: China Water & Power Press, 2003. (in Chinese)
    [17]
    志波由纪夫, 川岛一彦, 大日方尚己, 等. 应答变位法にょるツ—ルドトンネルの地震时断面力の算定法[J]. 土木学会论文集, 1989, 404(11): 385–394.

    SHIBA Y, KAWASHIMA K, OBINATA N, KANO K. Evaluation method of longitudinal stiffness of shield tunnel linings for application to seismic response analysis[J]. Proceedings of the Japan Society of Civil Engineers, 1989, 404(11): 385-394. (in Japanese)
    [18]
    ATTEWELL P B, YEATES J, SELBY A R. Soil movements induced by tunnelling and their effects on pipelines and structures[M]. Glawsgow: Blackie, 1986.
    [19]
    张厚美. 地铁盾构工程设计与施工过程的若干问题研究[D]. 上海: 上海交通大学, 2004.

    ZHANG Houmei. Research on Some Problems in the Design and Construction Process of Subway Shield Engineering[D]. Shanghai: Shanghai Jiao Tong University, 2004. (in Chinese)
    [20]
    城市轨道交通结构安全保护技术规范: GJJ/T 202—2013[S]. 北京: 北京建筑工业出版社, 2013.

    Technical Code for Protection Structures of Urban Rail Transit: GJJ/T 202—2013[S]. Beijing: China Architecture and Builiding Press, 2013. (in Chinese)
  • Related Articles

    [1]ZHOU Fengxi, GAO Zhigang, CAO Xiaolin, DAI Guoliang. Horizontal dynamic analysis of a single pile in saturated soft soils under Rayleigh wave action consideringe effects of vertical loads[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 166-170. DOI: 10.11779/CJGE2024S20030
    [2]LIU Yuan, CHEN Renpeng, CHENG Hongzhan, WU Huaina, ZHANG Kai. Analytical solutions for performance of existing shield tunnel subjected to overlying excavation under anti-uplift portal frame[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1675-1684. DOI: 10.11779/CJGE20230338
    [3]LIANG Rongzhu, ZHANG Zhiwei, LI Zhongchao, FU Yukun, CAO Shi'an, KANG Cheng, XIAO Mingzhao, WU Wenbing. Simplified solutions for longitudinal deformation of shield tunnels considering influences of circumferential joints[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 254-263. DOI: 10.11779/CJGE20221379
    [4]Analytical solution for longitudinal deformation of shield tunnel considering nonlinear rotational effects of circumferential joints[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240313
    [5]ZHANG Zhiguo, CHEN Jie, ZHU Zhengguo, WEI Gang, WU Zhongteng, LU Zheng. Longitudinal deformations of existing discontinuous tunnels induced by shield tunneling based on Kerr foundation model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2238-2247. DOI: 10.11779/CJGE20221012
    [6]ZHANG Xiaodi, WANG Jinchang, YANG Zhongxuan, GONG Xiaonan, XU Rongqiao. Analytical solutions for laterally loaded step-tapered piles by state space method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1944-1624. DOI: 10.11779/CJGE20220384
    [7]ZHANG Ling, YUE Shao, ZHAO Ming-hua, PENG Wen-zhe. Behaviors of pile-column piers based on modified pasternak foundation model[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1817-1826. DOI: 10.11779/CJGE202210007
    [8]CHENG Kang, YU Fan, LIANG Rong-zhu, LIN Cun-gang, XIA Tang-dai, XU Ri-qing. Horizontal deformation of adjacent single pile under tunneling considering shearing effect of piles[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 178-182. DOI: 10.11779/CJGE2018S2036
    [9]LU Shi-jie, WEI Gang. Vibration prediction of immersed tube tunnels under vehicle loads based on Timoshenko beam theory[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1627-1634. DOI: 10.11779/CJGE201809008
    [10]CHEN Yunmin, WANG Hongzhi. Analysis on lateral dynamic response of a pile with the method of reverberation ray matrix[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(3): 271-275.
  • Other Related Supplements

  • Cited by

    Periodical cited type(2)

    1. 杨会林. 隧道穿越碎裂大涌水岩体变形破坏机理及处治对策. 铁道建筑技术. 2024(07): 121-124 .
    2. 王志岗,陶连金,史明,刘建功,石城,张海祥,郭文远,谢霖. 穿越活动断裂带的城市地铁隧道抗断性能及损伤状态量化指标研究. 应用基础与工程科学学报. 2024(06): 1772-1786 .

    Other cited types(4)

Catalog

    Article views (269) PDF downloads (102) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return