• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
QIN You, YANG Zhengtao, WU Qi, ZHAO Kai, CHEN Guoxing. Liquefaction flow characteristics of saturated coral sand subjected to various patterns of cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1625-1634. DOI: 10.11779/CJGE20220798
Citation: QIN You, YANG Zhengtao, WU Qi, ZHAO Kai, CHEN Guoxing. Liquefaction flow characteristics of saturated coral sand subjected to various patterns of cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1625-1634. DOI: 10.11779/CJGE20220798

Liquefaction flow characteristics of saturated coral sand subjected to various patterns of cyclic loading

More Information
  • Received Date: June 23, 2022
  • Available Online: February 26, 2023
  • The accumulation of the excess pore water pressure of saturated sand under various cyclic loadings is the cause of soil liquefaction, and it is a relatively new research idea to treat the liquefiable sand as a fluid. A comprehensive experimental investigation of the liquefaction flow characteristics is performed for the saturated coral sand subjected to the jump of 90° and the continuous rotation of the principal stresses with cyclic loading frequency (f) at isotropic consolidations. The test results show that the relationship between the normalized apparent viscosity (η/η0) and the excess pore water pressure ratio (ru) is significantly affected by the cyclic stress paths, the degradation of η/η0 with ru is a progressive process, and a positive exponential correlation exists between the average flow coefficient () and ru. The correlations between η/η0 and ru and between and ru seem to be independent on the cyclic stress ratio (CSR = 0.25~0.40) and f (= 0.1~1 Hz). Another significant finding is that the apparent viscosity gradient and the average flow coefficient gradient both increase first and then decrease with the increase of ru regardless of the jump of 90° and the continuous rotation of the principal stresses, and ru approximately equal to 0.9 at the reversal point can be regarded as the threshold value of the excess pore water pressure ratio (ruth) at the phase transformation state from the solid state to the liquid one, by denoting the corresponding as . The data points of -ru for all testing conditions are distributed in a narrow band, and a virtually positive exponential relationship exists between and ru.
  • [1]
    陈国兴. 岩土地震工程学[M]. 北京: 科学出版社, 2007.

    CHEN Guoxing. Geotechnical Earthquake Engineering[M]. Beijing: Science Press, 2007. (in Chinese)
    [2]
    MARCUSON W F. Definition of terms related to liquefaction[J]. Journal of the Geotechnical Engineering Division, 1978, 104(9): 1197-1200. doi: 10.1061/AJGEB6.0000688
    [3]
    SEED H B, LEE K L. Liquefaction of saturated sands during cyclic loading[J]. Journal of the Soil Mechanics and Foundations Division, 1966, 92(6): 105-134. doi: 10.1061/JSFEAQ.0000913
    [4]
    NATIONAL (U S). State of the Art and Practice in the Assessment of Earthquake-Induced Soil Liquefaction and Its Consequences[M]. Washington, DC: National Academies Press, 2022
    [5]
    TOWHATA I, VARGAS-MONGE W, ORENSE R P, et al. Shaking table tests on subgrade reaction of pipe embedded in sandy liquefied subsoil[J]. Soil Dynamics and Earthquake Engineering, 1999, 18(5): 347-361. doi: 10.1016/S0267-7261(99)00008-1
    [6]
    陈育民, 刘汉龙, 周云东. 液化及液化后砂土的流动特性分析[J]. 岩土工程学报, 2006, 28(9): 1139-1143. doi: 10.3321/j.issn:1000-4548.2006.09.017

    CHEN Yumin, LIU Hanlong, ZHOU Yundong. Analysis on flow characteristics of liquefied and post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1139-1143. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.09.017
    [7]
    王志华, 周恩全, 陈国兴, 等. 循环荷载下饱和砂土固-液相变特征[J]. 岩土工程学报, 2012, 34(9): 1604-1610. http://www.cgejournal.com/cn/article/id/14685

    WANG Zhihua, ZHOU Enquan, CHEN Guoxing, et al. Characteristics of solid-liquid phase change of saturated sand under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1604-1610. (in Chinese) http://www.cgejournal.com/cn/article/id/14685
    [8]
    WANG Z H, MA J L, GAO H M, et al. Unified thixotropic fluid model for soil liquefaction[J], Géotechnique, 2020, 70(10): 849-862. doi: 10.1680/jgeot.17.P.300
    [9]
    CHEN G X, ZHOU E Q, WANG Z H, et al. Experimental investigation on fluid characteristics of medium dense saturated fine sand in pre- and post-liquefaction[J]. Bulletin of Earthquake Engineering, 2016, 14(8): 2185-2212. doi: 10.1007/s10518-016-9907-6
    [10]
    LIRER S, MELE L. On the apparent viscosity of granular soils during liquefaction tests[J]. Bulletin of Earthquake Engineering, 2019, 17(11): 5809-5824. doi: 10.1007/s10518-019-00706-0
    [11]
    MELE L. An experimental study on the apparent viscosity of sandy soils: from liquefaction triggering to pseudo-plastic behaviour of liquefied sands[J]. Acta Geotechnica, 2022, 17(2): 463-481. doi: 10.1007/s11440-021-01261-2
    [12]
    黄博, 凌道盛, 丁浩, 等. 斜入射地震波在土体中产生的动应力路径及试验模拟[J]. 岩土工程学报, 2013, 35(2): 276-283. http://www.cgejournal.com/cn/article/id/14969

    HUANG Bo, LING Daosheng, DING Hao, et al. Seismic stress path induced by obliquely incident waves and its simulation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 276-283. (in Chinese) http://www.cgejournal.com/cn/article/id/14969
    [13]
    马维嘉, 陈国兴, 吴琪. 复杂加载条件下珊瑚砂抗液化强度试验研究[J]. 岩土力学, 2020, 41(2): 535-542, 551. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002025.htm

    MA Weijia, CHEN Guoxing, WU Qi. Experimental study on liquefaction resistance of coral sand under complex loading conditions[J]. Rock and Soil Mechanics, 2020, 41(2): 535-542, 551. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002025.htm
    [14]
    CHEN G X, MA W J, QIN Y, et al. Liquefaction susceptibility of saturated coral sand subjected to various patterns of principal stress rotation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(9): 04021093.
    [15]
    HYODO M, HYDE A F L, ARAMAKI N. Liquefaction of crushable soils[J]. Géotechnique, 1998, 48 (4): 527–543. doi: 10.1680/geot.1998.48.4.527
    [16]
    马维嘉, 陈国兴, 李磊, 等. 循环荷载下饱和南沙珊瑚砂的液化特性试验研究[J]. 岩土工程学报, 2019, 41(5): 981-988. doi: 10.11779/CJGE201905023

    MA Weijia, CHEN Guoxing, LI Lei, et al. Experimental study on liquefaction characteristics of saturated coral sand in Nansha Islands under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 981-988. (in Chinese) doi: 10.11779/CJGE201905023
    [17]
    SALEM M, ELMAMLOUK H, AGAIBY S. Static and cyclic behavior of North Coast calcareous sand in Egypt[J]. Soil Dynamics and Earthquake Engineering, 2013, 55: 83-91. doi: 10.1016/j.soildyn.2013.09.001
    [18]
    VAHDANI S, PYKE R, SIRIPRUSANEN U. Liquefaction of Calcareous Sands and Lateral Spreading Experienced in Guam as A Result of the 1993 Guam Earthquake[R]. Buffalo: US National Center for Earthquake Engineering Research, 1994.
    [19]
    CHOCK G, ROBERTSON I, NICHOLSON P, et al. Compilation of Observations of the October 15, 2006 Kiholo Bay (Mw6.7) and Mahukona (Mw 6.0) Earthquakes, Hawai'i[R]. Oakland: Earthquake Engineering Research Institute (EERI), 2006.
    [20]
    OLSON S M, GREEN R A, LASLEY S, et al. Documenting liquefaction and lateral spreading triggered by the 12 January 2010 Haiti earthquake[J]. Earthquake Spectra, 2011, 27(S1): 93-116.
    [21]
    WANG Y S, QIU Y Y, MA L J, et al. Experimental study on the cyclic response of Nanhai Sea calcareous sand in China[J]. Arabian Journal of Geosciences, 2019, 12(22): 677.
    [22]
    SHARMA S S, ISMAIL M A. Monotonic and cyclic behavior of two calcareous soils of different origins[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(12): 1581-1591.
    [23]
    CHEN G X, WU Q, ZHOU Z L, et al. Undrained anisotropy and cyclic resistance of saturated silt subjected to various patterns of principal stress rotation[J]. Géotechnique, 2020, 70(4): 317-331.
    [24]
    MA W J, QIN Y, ZHAO K, et al. Comparisons on liquefaction behavior of saturated coral sand and quartz sand under principal stress rotation[J]. Marine Georesources & Geotechnology, 2022, 40(2): 235-247.
    [25]
    土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [26]
    CHENG D C H. A differential form of constitutive relation for thixotropy[J]. Rheologica Acta, 1973, 12(2): 228-233.
    [27]
    CHEN G X, WU Q, SUN T, et al. Cyclic behaviors of saturated sand-gravel mixtures under undrained cyclic triaxial loading[J]. Journal of Earthquake Engineering, 2021, 25(4): 756-789.
    [28]
    SIVATHAYALAN S, LOGESWARAN P, MANMATHARAJAN V. Cyclic resistance of a loose sand subjected to rotation of principal stresses[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(3): 04014113.
  • Related Articles

    [1]Experimental Study on the Influence of Formation Lateral Pressure Coefficient on the Mechanical Properties of Double-Layer Lining Structure in Shield Tunnel[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20230909
    [2]ZHONG Xiaochun, MO Nuanjiao, YU Mingxue, ZHU Weibin, ZHU Nengwen, YOU Zhi. Unit tests on shield tail brush annular sealing system and its watertightness mechanism[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 354-361. DOI: 10.11779/CJGE20211464
    [3]JIANG Ming-jie, LU Xiao-ping, ZHU Jun-gao, JI En-yue, GUO Wan-li. Method for estimating at-rest lateral pressure coefficient of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 77-81. DOI: 10.11779/CJGE2018S2016
    [4]SHI Jian-yong, ZHAO Yi. Influence of air pressure and void on permeability coefficient of air in municipal solid waste (MSW)[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 586-593. DOI: 10.11779/CJGE201504002
    [5]LI Guo-wei, HU Jian, LU Xiao-cen, ZHOU Yang. One-dimensional secondary consolidation coefficient and lateral pressure coefficient of overconsolidated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2198-2205.
    [6]JIA Ning. Coefficient of at-rest earth pressure from limited backfill[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1333-1337.
    [7]TANG Shidong, Lv Jianchun, FU Zong. Solution to initial horizontal stress and lateral earth pressure coefficient at rest by flat dilatometer tests[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2144-2148.
    [8]LIN Zheng, CHEN Renpeng, CHEN Yunmin, XU Feng. A method for in-situ testing of coefficients of consolidation and permeability of soils[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 505-510.
    [9]GAO Jiangping, YU Maohong, HU Changshun, CHEN Zhongda. Study on the distributive rule of the earth pressure and its coefficient of the reinforced earth wall[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(5): 582-584.
    [10]Peng Dapeng. Probability Analysis of Soil Pressure Coefficient[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(6): 117-122.
  • Cited by

    Periodical cited type(10)

    1. 李永辉,王海,牛恒宇,蒋晓天. 砂土-钢板界面剪切试验与PFC细观模拟分析. 长江科学院院报. 2025(02): 107-114+137 .
    2. 罗余游,刘洪伟,朱鹏宇. 基于DDA方法的高填方分层碾压强夯研究. 路基工程. 2024(02): 153-158 .
    3. 冯忞,宋文捷. 含水率对残积土与土工织物界面剪切特性的影响. 华南地震. 2024(01): 157-164 .
    4. 禹克强,孙少锐,曹曜,王武超,黄佳豪,靳春林,赵博涵. 养护时间和基质含量对土石混合体力学特性的影响. 河南科学. 2024(07): 994-1002 .
    5. 吴建奇,李敏,罗翔,陈腾. 密实度对格栅-再生混凝土骨料界面剪切特性的影响. 路基工程. 2024(05): 84-90 .
    6. 石广斌,周泽凯. 土石混合体边坡力学特性及稳定性分析方法研究进展. 金属矿山. 2024(10): 202-215 .
    7. 刘旻,张斌,刘飞禹,刘文燕. 土工格栅防护下埋地管道的力学性能及变形分析. 科学技术与工程. 2024(31): 13531-13539 .
    8. 龚健,梁桓玮,王剑峰,王展宏,许海,欧孝夺,罗月静. 含石量、粗颗粒级配与细粒土性质对土石混合体剪切特性影响研究. 广西大学学报(自然科学版). 2024(06): 1244-1258 .
    9. 汤新,蒋亚龙,孙洋,吴亮秦,圣小珍,郭文杰,王建立. 基于离散元法的土石混合体力学特性数值分析. 华东交通大学学报. 2024(06): 1-10 .
    10. 崔倩. 3D土工格栅-砂界面剪切性状研究. 低温建筑技术. 2023(12): 61-65 .

    Other cited types(8)

Catalog

    Article views (326) PDF downloads (113) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return