• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
GENG Zhe, YUAN Dajun, JIN Dalong, SHU Jicheng, LOU Rui. Loose earth pressure of tunnels considering progressive failure of loosen zone[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1754-1762. DOI: 10.11779/CJGE20220684
Citation: GENG Zhe, YUAN Dajun, JIN Dalong, SHU Jicheng, LOU Rui. Loose earth pressure of tunnels considering progressive failure of loosen zone[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1754-1762. DOI: 10.11779/CJGE20220684

Loose earth pressure of tunnels considering progressive failure of loosen zone

More Information
  • Received Date: May 26, 2022
  • Available Online: February 23, 2023
  • The loose earth pressure of shallow shield tunnel is closely related to the soil arch effect and the progressive failure of the loosen zone. Based on the ellipsoidal theory, the elliptic loosen zone model is established, and the relationship between the ground loss and the loosen zone height is proposed. The process of progressive failure and the limit state are defined. Considering the soil cohesion and the ellipse shape of the loosen zone, the lateral earth pressure coefficient under arbitrary dip angle of slip surface is obtained by means of the large principal stress trace method. The formula for calculating the loose earth pressure at tunnel top is derived and verified. The parameter analysis is carried out for the limit state and non-limit state, and the research results show that: (1) The loose soil pressure at tunnel top decreases with the increase of the internal friction angle and cohesion. (2) With the increase of the loosen zone height, the loose earth pressure at tunnel top decreases sharply first, then increases gradually, and finally tends to be stable.
  • [1]
    陈湘生, 徐志豪, 包小华, 等. 中国隧道建设面临的若干挑战与技术突破[J]. 中国公路学报, 2020, 33(12): 1-14. doi: 10.3969/j.issn.1001-7372.2020.12.001

    CHEN Xiangsheng, XU Zhihao, BAO Xiaohua, et al. Challenges and technological breakthroughs in tunnel construction in China[J]. China Journal of Highway and Transport, 2020, 33(12): 1-14. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.12.001
    [2]
    KOYAMA Y, KONISHI S, OKANO N. In-situ measurement and consideration on shield tunnel[J]. Quarterly Report of RTRI, 2001, 42(3): 125-129. doi: 10.2219/rtriqr.42.125
    [3]
    KOYAMA Y. Present status and technology of shield tunneling method in Japan[J]. Tunnelling and Underground Space Technology, 2003, 18(2/3): 145-159.
    [4]
    袁大军, 吴俊, 沈翔, 等. 超高水压越江海长大盾构隧道工程安全[J]. 中国公路学报, 2020, 33(12): 26-45. doi: 10.3969/j.issn.1001-7372.2020.12.003

    YUAN Dajun, WU Jun, SHEN Xiang, et al. Engineering safety of cross-river or cross-sea long-distance large-diameter shield tunneling under superhigh water pressure[J]. China Journal of Highway and Transport, 2020, 33(12): 26-45. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.12.003
    [5]
    TERZAGHI K. Stress distribution in dry and in saturated sand above a yielding trap-door[C]// Proceedings of First International Conference on Soil Mechanics and Foundation Engineering. Cambridge, 1936.
    [6]
    TERZAGHI K, PECK R, MESRI G. Soil Mechanics in Engineering Practice[M]. New York: Hohn Wiley and Sons, Inc, 1948.
    [7]
    HANDY R L. The arch in soil arching[J]. Journal of Geotechnical Engineering, 1985, 111(3): 302-318. doi: 10.1061/(ASCE)0733-9410(1985)111:3(302)
    [8]
    HARROP-WILLIAMS K. Arch in soil arching[J]. Journal of Geotechnical Engineering, 1989, 115(3): 415-419. doi: 10.1061/(ASCE)0733-9410(1989)115:3(415)
    [9]
    陈若曦, 朱斌, 陈云敏, 等. 基于主应力轴旋转理论的修正Terzaghi松动土压力[J]. 岩土力学, 2010, 31(5): 1402-1406. doi: 10.3969/j.issn.1000-7598.2010.05.009

    CHEN Ruoxi, ZHU Bin, CHEN Yunmin, et al. Modified Terzaghi loozening earth pressure based on theory of main stress axes rotation[J]. Rock and Soil Mechanics, 2010, 31(5): 1402-1406. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.05.009
    [10]
    陈国舟, 周国庆. 考虑土拱效应的滑移面间竖向应力研究[J]. 中国矿业大学学报, 2014, 43(3): 374-379. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201403002.htm

    CHEN Guozhou, ZHOU Guoqing. Study of vertical stress between slip planes considering soil arching effect[J]. Journal of China University of Mining & Technology, 2014, 43(3): 374-379. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201403002.htm
    [11]
    陈国舟, 周国庆. 考虑土拱效应的倾斜滑移面间竖向应力研究[J]. 岩土力学, 2013, 34(9): 2643-2648. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407050.htm

    CHEN Guozhou, ZHOU Guoqing. Study of vertical stress within inclined slip surfaces considering soil arching[J]. Rock and Soil Mechanics, 2013, 34(9): 2643-2648. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407050.htm
    [12]
    徐长节, 梁禄钜, 陈其志, 等. 考虑松动区内应力分布形式的松动土压力研究[J]. 岩土力学, 2018, 39(6): 1927-1934. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806002.htm

    XU Changjie, LIANG Luju, CHEN Qizhi, et al. Research on loosening earth pressure considering the patterns of stress distribution in loosening zone[J]. Rock and Soil Mechanics, 2018, 39(6): 1927-1934. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806002.htm
    [13]
    宫全美, 张润来, 周顺华, 等. 基于颗粒椭球体理论的隧道松动土压力计算方法[J]. 岩土工程学报, 2017, 39(1): 99-105. doi: 10.11779/CJGE201701008

    GONG Quanmei, ZHANG Runlai, ZHOU Shunhua, et al. Method for calculating loosening earth pressure around tunnels based on ellipsoid theory of particle flows[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 99-105. (in Chinese) doi: 10.11779/CJGE201701008
    [14]
    汪大海, 贺少辉, 刘夏冰, 等. 基于主应力旋转特征的浅埋隧道上覆土压力计算及不完全拱效应分析[J]. 岩石力学与工程学报, 2019, 38(6): 1284-1296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906019.htm

    WANG Dahai, HE Shaohui, LIU Xiabing, et al. A modified method for determining the overburden pressure above shallow tunnels considering the distribution of the principal stress rotation and the partially mobilized arching effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1284-1296. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906019.htm
    [15]
    汪大海, 贺少辉, 刘夏冰, 等. 地层渐进成拱对浅埋隧道上覆土压力影响研究[J]. 岩土力学, 2019, 40(6): 2311-2322. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906031.htm

    WANG Dahai, HE Shaohui, LIU Xiabing, et al. Study on the influence of gradual arching of strata on the earth pressure on shallow tunnel[J]. Rock and Soil Mechanics, 2019, 40(6): 2311-2322. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906031.htm
    [16]
    IGLESIA G R. Trapdoor Experiments on the Centrifuge, A Study of Arching in Geomaterials and Similitude in Geotechnical Models[D]. Boston: Dept of Civil Engineering, MIT, 1991.
    [17]
    IGLESIA G R, EINSTEIN H H, WHITMAN R V. Validation of centrifuge model scaling for soil systems via trapdoor tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(11): 1075-1089.
    [18]
    IGLESIA G R, EINSTEIN H H, WHITMAN R V. Investigation of soil arching with centrifuge tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(2): 04013005.
    [19]
    JACOBSZ S. Trapdoor Experiments Studying Cavity Propagation[M]// Proceedings of the First Southern African Geotechnical Conference. Los Angeles: CRC Press, 2016: 159-165.
    [20]
    LEE C, CHEN H, LIN W, et al. Evolution of Arching Effect during Tunneling in Sandy Soil[M]// Physical Modelling in Geotechnics. New York: Taylor & Francis, 2006.
    [21]
    SHAHIN H M, NAKAI T, ZHANG F, et al. Model tests and numerical simulations on shallow circular tunneling-Ground movement and earth pressure due to circular tunneling[C]// Proc. of the 6th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Shanghai, China. 2008: 709-715.
    [22]
    JANELID I, KVAPIL R. Sublevel caving[C]//International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon, 1966, 3(2): 129-132.
    [23]
    WU J, LIAO S M, LIU M B. An analytical solution for the arching effect induced by ground loss of tunneling in sand[J]. Tunnelling and Underground Space Technology, 2019, 83: 175-186.
  • Related Articles

    [1]GAO Fuzhou, ZHANG Junyun, LUO Xiaolong, ZHAI Kexiang, ZHANG Le, HUANG Rui, WU Xiaofei. Shear mechanical properties and empirical formula of infilled rock joints[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 608-617. DOI: 10.11779/CJGE20231194
    [2]LIN Peiyuan, GUO Panfeng, GUO Chengchao, CHEN Lichao, WANG Fuming. Experimental study on interfacial shear properties of steel plate, polymer and soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 85-93. DOI: 10.11779/CJGE20210845
    [3]YOU Ming-qing. Properties of damage, cohesion and friction of rocks[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 554-560. DOI: 10.11779/CJGE201903018
    [4]KONG Ling-wei, XIONG Chun-fa, GUO Ai-guo, YANG Ai-wu. Effects of shear rate on strength properties and pile-soil interface of marine soft clay[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 13-16. DOI: 10.11779/CJGE2017S2004
    [5]TANG Zhi-cheng, WANG Xiao-chuan. Experimental studies on mechanical behaviour of rock joints with varying matching degrees[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2312-2319. DOI: 10.11779/CJGE201712021
    [6]YANG Ren-shu, CHEN Jun, FANG Shi-zheng, HOU Li-dong, CHEN Shuai-zhi. Inversion analysis of M-C criterion parameters of rock based on uniaxial shearing failure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1351-1356. DOI: 10.11779/CJGE201707023
    [7]WANG Gang, ZHANG Xue-peng, JIANG Yu-jing, ZHANG Yong-zheng. New shear strength criterion for rough rock joints considering shear velocity[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1399-1404. DOI: 10.11779/CJGE201508006
    [8]LEI Guo-hui, CHEN Jing-jing. Tribological explanation of effective stress controlling shear strength of saturated geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1517-1525.
    [9]TONG Zhiyi, CHEN Congxin, XU Jian, ZHANG Gaochao, LU Wei. Selection of shear strength of structural plane based on adhesion friction theory[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1367-1371.
    [10]Guo Shaohua. Standard space theory of strength criterion for anisotropic internal friction materials[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(3): 340-343.
  • Cited by

    Periodical cited type(9)

    1. 郭文远,李世民,王志岗,高涛,陶连金,谢霖,刘建功,刘华南. 正断层错动作用下浅埋地铁隧道受力分析方法及抗断设计研究. 振动与冲击. 2025(01): 252-261+297 .
    2. 王浩鱇,申玉生,潘笑海,常铭宇,张昕阳,粟威. 强震区穿越多破裂面破碎带隧道动力特性试验研究. 现代隧道技术. 2025(01): 212-220+230 .
    3. 王志岗,陶连金,石城,史明,刘建功. 逆断层错动作用下双仓管廊结构力学特性和抗断设计研究. 土木工程学报. 2024(07): 37-50 .
    4. 翟之阳,王春瑶,路平. 地震作用下隧道不同位置单一及组合渗漏规律研究. 安徽建筑. 2024(09): 153-157 .
    5. 张治国,冯家伟,朱正国,赵其华,孙苗苗. 断层错动下非连续管道的力学响应分析. 岩土力学. 2024(11): 3221-3234 .
    6. 王天强,耿萍,何川,王琦. 穿越活动断裂带螺旋隧道抗错性能模型试验研究. 岩石力学与工程学报. 2024(11): 2738-2752 .
    7. 张君臣,李伟平,晏启祥,张伟列,孙明辉,陈文宇. 含有空心榫的盾构隧道环缝接头柔性特征研究. 土木工程学报. 2024(12): 104-117 .
    8. 王综仕,韩现民,徐孟起,王为鑫. 断层错动-地震不同时序作用对隧道的影响研究. 石家庄铁道大学学报(自然科学版). 2024(04): 45-50+124 .
    9. 朱合华,禹海涛,韩富强,卫一博,袁勇. 穿越活动断层隧道抗震韧性设计理念与关键问题. 中国公路学报. 2023(11): 193-204 .

    Other cited types(2)

Catalog

    Article views (317) PDF downloads (120) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return