• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Hang, LI Zewen, LIAO Shaoming, LI Zhiyi, ZHONG Huawei. Field measurement of time-space distribution behaviors of environmental settlement of an ultra-deep excavation in Shanghai soft ground[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1595-1604. DOI: 10.11779/CJGE20220661
Citation: LI Hang, LI Zewen, LIAO Shaoming, LI Zhiyi, ZHONG Huawei. Field measurement of time-space distribution behaviors of environmental settlement of an ultra-deep excavation in Shanghai soft ground[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1595-1604. DOI: 10.11779/CJGE20220661

Field measurement of time-space distribution behaviors of environmental settlement of an ultra-deep excavation in Shanghai soft ground

More Information
  • Received Date: May 22, 2022
  • Available Online: February 23, 2023
  • Based on the extensive field observations, the environmental deformation characteristics of a 31.3 m-deep excavation in Shanghai soft ground are investigated. The results show that compared with the general excavations with a depth ranging from 12 to 20 m, the ultra-deep excavation presents significant environmental effects and time-space distribution behaviors: (1) The influence zone of settlement near the long side of the excavation is related to the wall deflection distribution on the plane. The more gently the lateral wall displacement changes from the middle area to the corner, the more extensive the influence zone is. The faster the lateral wall displacement transits from the middle to the corner of the excavation, the more concentrated the influential zone is. (2) Due to the corner effects, the ground surface settlement decreases rapidly from the center to the corner, and exhibits a Gaussian distribution law, with the influence range extending to 1.5He (depth of excavation) behind the excavation corner. (3) The deformation of buildings exhibits distinct three-dimensional characteristics. The buildings located near the excavation corner have less settlement than those near the center of the excavation, accompanied by a certain torsional deformation. (4) When the buildings paralleling to the retaining wall cross the corner of the excavation, the most dangerous point is located within 0.5He near the corner of the excavation, and its damage degree depends on the relative location between the buildings and the excavation and their stiffness. (5) Compared with the conventional deep excavations, the ultra-deep excavation leads to a larger primary influence zone for ground surface settlement, reaching about 3He, but the location of the maximum surface settlement is closer to the wall, nearly 0.5He behind the retaining wall. (6) The maximum ground surface settlement δvm is about 0.03%~0.50%He, and the relationship between the maximum ground surface settlement δvm and the maximum lateral wall displacement δhm can be expressed by δvm=0.6δhm averagely.
  • [1]
    BOSCARDIN M D, CORDING E J. Building response to excavation-induced settlement[J]. Journal of Geotechnical Engineering, 1989, 115(1): 1-21. doi: 10.1061/(ASCE)0733-9410(1989)115:1(1)
    [2]
    LI H, TANG Y J, LIAO S M, et al. Structural response and preservation of historic buildings adjacent to oversized deep excavation[J]. Journal of Performance of Constructed Facilities, 2021, 35(6): 04021095. doi: 10.1061/(ASCE)CF.1943-5509.0001676
    [3]
    PECK. Deep excavation and tunnelling in soft ground[C]// ICSMFE Proc 7th Int Conf SMFE State of the Art Volume. Mexico: Balkema, 1969: 225-290.
    [4]
    MANA A I, CLOUGH G W. Prediction of movements for braced cuts in clay[J]. Journal of the Geotechnical Engineering Division, 1981, 107(6): 759-777. doi: 10.1061/AJGEB6.0001150
    [5]
    CLOUGH R W, O'ROURKE T D. Construction induced movements of in-situ walls[J]. Specialty Conference on Design and Performance of Earth Retaining Structures, 1990: 430-477.
    [6]
    OU C Y, HSIEH P G, CHIOU D C. Characteristics of ground surface settlement during excavation[J]. Canadian Geotechnical Journal, 1993, 30(5): 758-767. doi: 10.1139/t93-068
    [7]
    KUNG G T, JUANG C H, HSIAO E C, et al. Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(6): 731-747. doi: 10.1061/(ASCE)1090-0241(2007)133:6(731)
    [8]
    王卫东, 徐中华, 王建华. 上海地区深基坑周边地表变形性状实测统计分析[J]. 岩土工程学报, 2011, 33(11): 1659-1666. http://www.cgejournal.com/cn/article/id/14412

    WANG Weidong, XU Zhonghua, WANG Jianhua. Statistical analysis of characteristics of ground surface settlement caused by deep excavations in Shanghai soft soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1659-1666. (in Chinese) http://www.cgejournal.com/cn/article/id/14412
    [9]
    TAN Y, WANG D L. Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay Ⅰ: bottom-up construction of the central cylindrical shaft[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(11): 1875-1893. doi: 10.1061/(ASCE)GT.1943-5606.0000928
    [10]
    OU C Y, CHIOU D C, WU T S. Three-dimensional finite element analysis of deep excavations[J]. Journal of Geotechnical Engineering, 1996, 122(5): 337-345. doi: 10.1061/(ASCE)0733-9410(1996)122:5(337)
    [11]
    LEE F H, YONG K Y, QUAN K C N, et al. Effect of corners in strutted excavations: field monitoring and case histories[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(4): 339-349. doi: 10.1061/(ASCE)1090-0241(1998)124:4(339)
    [12]
    FINNO R J, BLACKBURN J T, ROBOSKI J F. Three-dimensional effects for supported excavations in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(1): 30-36. doi: 10.1061/(ASCE)1090-0241(2007)133:1(30)
    [13]
    WANG Z W, NG C W, LIU G B. Characteristics of wall deflections and ground surface settlements in Shanghai[J]. Canadian Geotechnical Journal, 2005, 42(5): 1243-1254. doi: 10.1139/t05-056
    [14]
    LIU G B, JIANG R J, NG C W W, et al. Deformation characteristics of a 38 m deep excavation in soft clay[J]. Canadian Geotechnical Journal, 2011, 48(12): 1817-1828. doi: 10.1139/t11-075
    [15]
    TAN Y, WEI B, DIAO Y P, et al. Spatial corner effects of long and narrow multipropped deep excavations in Shanghai soft clay[J]. Journal of Performance of Constructed Facilities, 2014, 28(4): 04014015. doi: 10.1061/(ASCE)CF.1943-5509.0000475
    [16]
    DG/TJ08—61—2018基坑工程技术标准[S]. 上海: 同济大学出版社, 2018.

    DG/TJ08—61—2018 Technical Code for Excavation Engineering[S]. Shanghai: Tongji University Press: 2018. (in Chinese)
    [17]
    徐中华. 上海地区支护结构与主体地下结构相结合的深基坑变形性状研究[D]. 上海: 上海交通大学, 2007.

    XU Zhonghua. Deformation Behavior of Deep Excavations Supported by Permanent Structure in Shanghai Soft Deposit[D]. Shanghai: Shanghai Jiao Tong University, 2007. (in Chinese)
    [18]
    TAN Y, WEI B. Observed behaviors of a long and deep excavation constructed by cut-and-cover technique in Shanghai soft clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(1): 69-88. doi: 10.1061/(ASCE)GT.1943-5606.0000553
    [19]
    HSIEH P G, OU C Y. Shape of ground surface settlement profiles caused by excavation[J]. Canadian Geotechnical Journal, 1998, 35(6): 1004-1017. doi: 10.1139/t98-056
    [20]
    上海市地基基础设计标准: DGJ08—11—2018[S]. 上海: 同济大学出版社, 2019.

    Foundation Design Code: DGJ08—11—2018[S]. Shanghai: Tongji University Press: 2019. (in Chinese)
    [21]
    LIU G B, NG C W, WANG Z W. Observed performance of a deep multistrutted excavation in Shanghai soft clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(8): 1004-1013. doi: 10.1061/(ASCE)1090-0241(2005)131:8(1004)
    [22]
    TAN Y, WANG D L. Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay Ⅱ: top-down construction of the peripheral rectangular pit[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(11): 1894-1910. doi: 10.1061/(ASCE)GT.1943-5606.0000929
  • Related Articles

    [1]LI Jiandong, YUAN Guangzong, BIAN Tianqi, ZHAO Yue, AN Xiaoyu. Influences of twin-tunnel excavation on settlement of shallow foundation buildings[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 147-151. DOI: 10.11779/CJGE2024S10015
    [2]CHENG Hong-zhan, CHEN Jian, HU Zhi-feng, LI Jian-bin. Evaluation of safety of buildings above tunnels accounting for spatial variability of soil properties[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 75-78. DOI: 10.11779/CJGE2017S2019
    [3]XIA Chao, LIU Xiu-zhen. Case study of settlement of adjacent buildings caused by excavation of a deep foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 479-482. DOI: 10.11779/CJGE2014S2083
    [4]SHEN Jian, QIU Zi-feng, XU Xiao-yu. Effect of excavation of foundation pits on settlement and stability of buildings at top of slopes[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 337-342. DOI: 10.11779/CJGE2014S2059
    [5]LI Jia-yu, CHEN Chen. Response of settlement and displacement of adjacent buildings of excavations to corner effect[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2238-2246.
    [6]QI Tai-yue. Settlement characteristics of strata and buildings caused by metro tunneling[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1283-1290.
    [7]ZHENG Gang, LI Zhi-wei. Comparative analysis of responses of buildings adjacent to excavations with different deformation modes of retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 969-977.
    [8]ZHENG Gang, LI Zhi-wei. Finite element analysis of response of buildings with arbitrary angle adjacent to excavations[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 615-624.
    [9]HUANG Pei, LIU Ming, CHEN Hua, ZHANG Qian. Safety assessment of impact of construction of deep excavations on adjacent buildings with pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 347-351.
    [10]Yan Hongbin, Zhang Jinghen, Xu Riqing, Gong Xiaonan. Analysis of Settlement of Buidings in Tianjin[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(5): 65-72.
  • Cited by

    Periodical cited type(10)

    1. 李永辉,王海,牛恒宇,蒋晓天. 砂土-钢板界面剪切试验与PFC细观模拟分析. 长江科学院院报. 2025(02): 107-114+137 .
    2. 罗余游,刘洪伟,朱鹏宇. 基于DDA方法的高填方分层碾压强夯研究. 路基工程. 2024(02): 153-158 .
    3. 冯忞,宋文捷. 含水率对残积土与土工织物界面剪切特性的影响. 华南地震. 2024(01): 157-164 .
    4. 禹克强,孙少锐,曹曜,王武超,黄佳豪,靳春林,赵博涵. 养护时间和基质含量对土石混合体力学特性的影响. 河南科学. 2024(07): 994-1002 .
    5. 吴建奇,李敏,罗翔,陈腾. 密实度对格栅-再生混凝土骨料界面剪切特性的影响. 路基工程. 2024(05): 84-90 .
    6. 石广斌,周泽凯. 土石混合体边坡力学特性及稳定性分析方法研究进展. 金属矿山. 2024(10): 202-215 .
    7. 刘旻,张斌,刘飞禹,刘文燕. 土工格栅防护下埋地管道的力学性能及变形分析. 科学技术与工程. 2024(31): 13531-13539 .
    8. 龚健,梁桓玮,王剑峰,王展宏,许海,欧孝夺,罗月静. 含石量、粗颗粒级配与细粒土性质对土石混合体剪切特性影响研究. 广西大学学报(自然科学版). 2024(06): 1244-1258 .
    9. 汤新,蒋亚龙,孙洋,吴亮秦,圣小珍,郭文杰,王建立. 基于离散元法的土石混合体力学特性数值分析. 华东交通大学学报. 2024(06): 1-10 .
    10. 崔倩. 3D土工格栅-砂界面剪切性状研究. 低温建筑技术. 2023(12): 61-65 .

    Other cited types(8)

Catalog

    Article views (457) PDF downloads (193) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return