• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHENG Hong-zhan, CHEN Jian, HU Zhi-feng, LI Jian-bin. Evaluation of safety of buildings above tunnels accounting for spatial variability of soil properties[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 75-78. DOI: 10.11779/CJGE2017S2019
Citation: CHENG Hong-zhan, CHEN Jian, HU Zhi-feng, LI Jian-bin. Evaluation of safety of buildings above tunnels accounting for spatial variability of soil properties[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 75-78. DOI: 10.11779/CJGE2017S2019

Evaluation of safety of buildings above tunnels accounting for spatial variability of soil properties

More Information
  • Received Date: August 01, 2017
  • Published Date: December 19, 2017
  • Considering the spatial variability of soil properties, a probabilistic evaluation method is proposed for the safety of buildings above tunnels based on the random field theory and the numerical analysis method. The elasticity modulus of soils is considered as the random fields, and the stress release method is employed to simulate the tunnel excavation. Then based on the assumption that the surface buildings are treated as the flexible beam model, the safety of buildings can be probabilistically assessed through the method of limit tensile strain. It is shown that the proposed method can properly evaluate the safety of buildings in variable soils. In addition, there is a significant influence of coefficients of variation and auto-correlation length of elasticity modulus on the safety of buildings. The higher the variability of elasticity modulus, the more scattering the distribution of the maximum tensile strain in buildings, and the larger the probability of higher category of building damages.
  • [1]
    MOLLON G, DIAS D, SOUBRA A H. Probabilistic analyses of tunneling-induced ground movements[J]. Acta Geotechnica, 2013, 8(2): 181-199.
    [2]
    MIRO S, KÖNIG M, HARTMANN D, et al. A probabilistic analysis of subsoil parameters uncertainty impacts on tunnel-induced ground movements with a back-analysis study[J]. Computers and Geotechnics, 2015, 68: 38-53.
    [3]
    程勇刚, 常晓林, 李典庆. 考虑岩体空间变异性的隧洞围岩变形随机分析[J]. 岩石力学与工程学报, 2012, 31(增刊1): 2767-2775. (CHENG Yong-gang, CHANG Xiao-lin, LI Dian-qing. Deformation stochastic analysis of tunnel surrounding rock considering its spatial randomness[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 2767-2775. (in Chinese))
    [4]
    HUBER M, HICKS M A, VERMEER P A, et al. Probabilistic calculation of differential settlement due to tunneling[C]// Proceedings of the 8th International Probabilistic Workshop. Szczecin, 2010: 1-13.
    [5]
    VANMARCKE E, YADRENKO M I. Random fields: Analysis and synthesis[J]. Cambridge Ma Mit Press P, 1983.
    [6]
    EL-KADI A I, WILLIAMS S A. Generating two-dimensional fields of autocorrelated, normally distributed parameters by the matrix decomposition technique[J]. Groundwater, 2000, 38(4): 530-32.
    [7]
    BURLAND, JOHN B, JAMES R, et al. Building response to tunnelling: case studies from construction of the Jubilee Line Extension[M]. London: Thomas Telford, 2001.
    [8]
    POLSHIN D E, AND R A TOKAR. Maximum allowable non-uniform settlement of structures[C]// Proceedings of 4th International Conference on Soil Mechanics and Foundation Engineering, Butterworth’s Scientific. London, 1957: 402-405.
    [9]
    MAIR R J, TAYLOR R N, BURLAND J B. Prediction of ground movements and assessment of risk of building damage due to bored tunnelling[C]// Fourth International Symposium of International Conference of Geotechnical Aspects of on Underground Construction in Soft Ground. London, 1996: 713-718.
    [10]
    BURLAND J B, WROTH C P. Settlement of buildings and associated damage[C]// Proceedings of Conference on Settlement of Structures. Cambridge. London, 1975: 611-654.
    [11]
    BURLAND J B, BROMS B B, MELLO V F B D, et al. Behaviour of foundations and structures[C]// Proc 9th Int Conf S M F E. Tokyo, 1977, Ⅱ: 495-546.
  • Related Articles

    [1]JIA Rui, LI Yiqun, LEI Huayang, JIANG Yuxuan. Modification of structured Cam-clay model based on triaxial undrained effective stress path[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 115-124. DOI: 10.11779/CJGE20231243
    [2]LI Xiao-yue, XU Yong-fu. Method for calculating swelling deformation of bentonite in salt solution[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2353-2359. DOI: 10.11779/CJGE201912022
    [3]DU Xiu-li, ZHANG Pei, XU Cheng-shun, LU De-chun. On principle of effective stress and effective stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 486-494. DOI: 10.11779/CJGE201803012
    [4]CHEN Yu-jiong. Examples of application of effective stress principle in China[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1674-1677. DOI: 10.11779/CJGE201509015
    [5]SHAO Long-tan, GUO Xiao-xia, ZHENG Guo-feng. Intergranular stress, soil skeleton stress and effective stress[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1478-1483. DOI: 10.11779/CJGE201508017
    [6]LU De-chun, DU Xiu-li, XU Cheng-shun. Analytical solutions to principle of effective stress[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 146-151.
    [7]XING Yichuan, XIE Dingyi, WANG Xiaogang, LI Zhen. 3D effective stress of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 288-293.
    [8]XING Yichuan, XIE Dingyi, LI Zheng. Stress transmission mechanism and effective stress principle of unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 53-57.
    [9]Zhao Yangsheng, Hu Yaoqing. Experimental Study of the Law of Effective Stress by Methane Pressure[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(3): 26-31.
    [10]Chen Zhenghan, Wang Yongsheng, Xie Dingyi. Effective Stress in Unsaturated Soil[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(3): 62-69.
  • Cited by

    Periodical cited type(17)

    1. 马少春,刘宴利,鲍鹏,潘艳辉,郭成超. 聚丙烯酰胺(PAM)改良黄泛区粉土堤防水理特性试验. 人民黄河. 2025(01): 148-153 .
    2. 张凌凯,丁旭升,樊培培. 新疆北部重塑性黄土的力学特性规律及微观机制试验研究. 材料导报. 2025(03): 107-116 .
    3. 曹金生,武立波,孙萌萌,刘惠阳,杨嘉伟. 煤气化渣改良黄土的力学特性试验分析. 中国科技论文. 2024(01): 23-32 .
    4. 闵凡路,申政,李彦澄,袁大军,陈健,李凯. 盾构淤泥质废弃黏土氧化镁固化-碳化试验及碳化机制研究. 岩土力学. 2024(02): 364-374 .
    5. 余云燕,高远,杜乾中,牛浩莹. 矿渣微粉改良红层填料的力学特性及其机理分析. 兰州交通大学学报. 2024(04): 1-9 .
    6. 王宝成,罗崇亮,魏书宝,刘伟,靳伟,张鹏. 石灰改良陇东黄土静、动模量及其影响因素试验研究. 公路. 2024(11): 54-60 .
    7. 焦韩伟,雷天奇,陈振鹏. 非饱和人工制备遗址土渗水系数预测. 勘察科学技术. 2024(06): 5-9 .
    8. 满吉芳. 碱激发粉煤灰地质聚合物对黄土力学性能的改性研究. 水利水电技术(中英文). 2023(01): 207-215 .
    9. 文少杰,郑文杰,胡文乐. 铅污染对黄土宏观持水性能和微观结构演化的影响研究. 岩土力学. 2023(02): 451-460 .
    10. 熊潭清. 排水带加速黄土路基固结沉降的数值模拟研究. 河南科技. 2023(06): 53-57 .
    11. 颜荣涛,徐玉博,颜梦秋. 含水合物土体的土水特征曲线及渗透系数. 岩土工程学报. 2023(05): 921-930 . 本站查看
    12. 王敏,王照耀. 膨润土与聚丙烯酸钠混合料改良湿陷性黄土试验研究. 合成材料老化与应用. 2023(04): 79-82 .
    13. 艾昕. 黄土地区某高速公路段滑坡机理的现场试验研究. 山西建筑. 2022(21): 82-84 .
    14. 何玉琪,廖红建,倪诗雨,牛波. 超疏水材料改良黄土的宏微观抗渗机制研究. 西安交通大学学报. 2022(11): 62-71 .
    15. 南亚林,张鹏,秦仕伟,梁迪,宋学庆,曹宝花,赵丹妮,许江波. 纳米黏土改良黄土渗透试验研究. 公路. 2022(10): 362-367 .
    16. 陈林万,曹玉桃,杜杰,张晓超,裴向军. 改性纤维素和生石灰改良黄土的抗剪强度特性及微观结构试验研究. 地质灾害与环境保护. 2022(04): 41-50 .
    17. 祝艳波,李红飞,巨之通,兰恒星,刘振谦,韩宇涛. 黄土抗剪强度与耐崩解性能综合改良试验研究. 煤田地质与勘探. 2021(04): 221-233 .

    Other cited types(10)

Catalog

    Article views (325) PDF downloads (217) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return