Citation: | JIA Rui, LI Yiqun, LEI Huayang, JIANG Yuxuan. Modification of structured Cam-clay model based on triaxial undrained effective stress path[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 115-124. DOI: 10.11779/CJGE20231243 |
[1] |
沈珠江. 土体结构性的数学模型: 21世纪土力学的核心问题[J]. 岩土工程学报, 1996, 18(1): 95-97. http://cge.nhri.cn/article/id/8998
SHEN Zhujiang. Mathematic model of structure—The key Problem for soil mechanics in 21st century[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(1): 95-97. (in Chinese) http://cge.nhri.cn/article/id/8998
|
[2] |
沈珠江. 结构性黏土的堆砌体模型[J]. 岩土力学, 2000, 21(1): 1-4.
SHEN Zhujiang. A masonry model for structured clays[J]. Rock and Soil Mechanics, 2000, 21(1): 1-4. (in Chinese)
|
[3] |
刘恩龙, 罗开泰, 张树祎. 初始应力各向异性结构性土的二元介质模型[J]. 岩土力学, 2013, 34(11): 3103-3109.
LIU Enlong, LUO Kaitai, ZHANG Shuyi. Binary medium model for structured soils with initial stress-induced anisotropy[J]. Rock and Soil Mechanics, 2013, 34(11): 3103-3109. (in Chinese)
|
[4] |
OURIA A. Disturbed state concept–based constitutive model for structured soils[J]. International Journal of Geomechanics, 2017, 17(7): 04017008. doi: 10.1061/(ASCE)GM.1943-5622.0000883
|
[5] |
ASAOKA A, NAKANO M, NODA T. Superloading yield surface concept for highly structured soil behavior[J]. Soils and Foundations, 2000, 40(2): 99-110. doi: 10.3208/sandf.40.2_99
|
[6] |
王立忠, 沈恺伦. K0固结结构性软黏土的本构模型[J]. 岩土工程学报, 2007, 29(4): 496-504. http://cge.nhri.cn/article/id/12452
WANG Lizhong, SHEN Kailun. A constitutive model of K0 consolided structured soft clays[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 496-504. (in Chinese) http://cge.nhri.cn/article/id/12452
|
[7] |
LU Y, JIANG Y, ZHU W X, et al. Unified description of different soils based on the superloading and subloading concepts[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(1): 239-254. doi: 10.1016/j.jrmge.2022.02.015
|
[8] |
ROUAINIA M, MUIR WOOD D. A kinematic hardening constitutive model for natural clays with loss of structure[J]. Géotechnique, 2000, 50(2): 153-164. doi: 10.1680/geot.2000.50.2.153
|
[9] |
KAVVADAS M, AMOROSI A. A constitutive model for structured soils[J]. Géotechnique, 2000, 50(3): 263-273. doi: 10.1680/geot.2000.50.3.263
|
[10] |
PARK D S, KUTTER B L. Sensitive bounding surface constitutive model for structured clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(14): 1968-1987. doi: 10.1002/nag.2507
|
[11] |
YIN Z Y, HATTAB M, HICHER P Y. Multiscale modeling of a sensitive marine clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(15): 1682-1702. doi: 10.1002/nag.977
|
[12] |
祝恩阳, 姚仰平. 结构性土UH模型[J]. 岩土力学, 2015, 36(11): 3101-3110, 3228.
ZHU Enyang, YAO Yangping. A UH constitutive model for structured soils[J]. Rock and Soil Mechanics, 2015, 36(11): 3101-3110, 3228. (in Chinese)
|
[13] |
TAIEBAT M, DAFALIAS Y F, PEEK R. A destructuration theory and its application to SANICLAY model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(10): 1009-1040. doi: 10.1002/nag.841
|
[14] |
LIU M D, CARTER J P. A structured Cam Clay model[J]. Canadian Geotechnical Journal, 2002, 39: 1313-1332. doi: 10.1139/t02-069
|
[15] |
CARTER J P, LIU M D. Review of the structured cam clay model[C]//Soil Constitutive Models. Austin, Texas, USA. Reston, VA: American Society of Civil Engineers, 2005: 128: 99-132.
|
[16] |
SUEBSUK J, HORPIBULSUK S, LIU M D. Modified Structured Cam Clay: a generalised critical state model for destructured, naturally structured and artificially structured clays[J]. Computers and Geotechnics, 2010, 37(7/8): 956-968.
|
[17] |
SUEBSUK J, HORPIBULSUK S, LIU M D. Compression and shear responses of structured clays during subyielding[J]. Geomechanics and Engineering, 2019, 18(2): 121-131. http://www.researchgate.net/publication/333852828_Compression_and_shear_responses_of_structured_clays_during_subyielding
|
[18] |
BURGHIGNOLI A, MILIZAANO S, SOCCODATO F M. The effect of bond degradation in cemented clayey soils[C]// Proceedings of the Symposium on Geotechnical Engineering of Hard Soils-Soft Rocks. Balkema, 1998: 465-472.
|
[19] |
NGUYEN L, FATAHI B, KHABBAZ H. Development of a constitutive model to predict the behavior of cement-treated clay during cementation degradation: C3 model[J]. International Journal of Geomechanics, 2017, 17(7): 04017010. doi: 10.1061/(ASCE)GM.1943-5622.0000863
|
[20] |
ADACHI T, OKA F, HIRATA T, et al. Stress-strain behavior and yielding characteristics of eastern Osaka clay[J]. Soils and Foundations, 1995, 35(3): 1-13. doi: 10.3208/sandf.35.1
|
[21] |
ANAGNOSTOPOULOS A G, KALTEZIOTIS N, TSIAMBAOS G K, et al. Geotechnical properties of the Corinth canal marls[J]. Geotechnical & Geological Engineering, 1991, 9(1): 1-26.
|
[22] |
WONG R. Swelling and softening behaviour of La Biche shale[J]. Canadian Geotechnical Journal, 1998, 35(2): 206-221. doi: 10.1139/t97-087
|