• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Ge, LIU Enlong. Binary-medium constitutive model for frozen soils based on CT dynamic scanning[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1888-1896. DOI: 10.11779/CJGE20220629
Citation: ZHANG Ge, LIU Enlong. Binary-medium constitutive model for frozen soils based on CT dynamic scanning[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1888-1896. DOI: 10.11779/CJGE20220629

Binary-medium constitutive model for frozen soils based on CT dynamic scanning

More Information
  • Received Date: May 16, 2022
  • Available Online: September 06, 2023
  • It is of great significance to carry out experimental researches on the macro-meso-mechanical properties of frozen soils to reveal the mechanism and the relationship between the meso- and the macro-meso-mechanical properties of frozen soils. The triaxial compression tests on the saturated frozen soils under four temperatures and four confining pressures are carried out by using the newly developed frozen soil triaxial instrument, which can cooperate with medical CT for dynamic scanning. A total of 8 CT dynamic scans are performed on the samples during the axial loading process. Through the statistical analysis of CT numbers and stress-strain curves, it is found that when the stress-strain curve is strain hardening, the average CT number of the frozen soil samples decreases linearly with the increase of the axial strain. When the stress-strain curve is strain softening, the average CT number of the frozen soil samples decreases rapidly at the softening stage. Based on the evolution laws of the average CT number of samples during the process of dynamic scanning, the breakage rate is characterized by the average CT number value, and the mesoscopic constitutive model for the saturated frozen soils is established, and the established constitutive model is verified through the test data. The results show that the proposed constitutive model can well predict the stress-strain behavior of frozen soils under the conventional triaxial stress path.
  • [1]
    徐斅祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2010.

    XU Xiaozu, WANG Jiacheng, ZHANG Lixin. Frozen Soil Physics[M]. Beijing: Science Press, 2010. (in Chinese)
    [2]
    ZHOU Z W, MA W, ZHANG S J, et al. Multiaxial creep of frozen loess[J]. Mechanics of Materials, 2016, 95: 172-191. doi: 10.1016/j.mechmat.2015.11.020
    [3]
    ZHOU Z W, MA W, ZHANG S J, et al. Effect of freeze-thaw cycles in mechanical behaviors of frozen loess[J]. Cold Regions Science and Technology, 2018, 146: 9-18. doi: 10.1016/j.coldregions.2017.11.011
    [4]
    ZHOU Z W, MA W, ZHANG S J, et al. Experimental investigation of the path dependent strength and deformation behaviours of frozen loess[J]. Engineering Geology, 2020, 265: 105449. doi: 10.1016/j.enggeo.2019.105449
    [5]
    杨岁桥, 王宁宁, 张虎. 高温冻土的蠕变特性试验及蠕变模型研究[J]. 冰川冻土, 2020, 42(3): 834-842. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202003011.htm

    YANG Suiqiao, WANG Ningning, ZHANG Hu. Study on creep test and creep model of warm frozen soil[J]. Journal of Glaciology and Geocryology, 2020, 42(3): 834-842. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202003011.htm
    [6]
    袁伟, 姚晓亮, 王文丽. 基于离散元的冻结砂土三轴力学特性研究[J]. 冰川冻土, 2019, 41(6): 1388-1396. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201906011.htm

    YUAN Wei, YAO Xiaoliang, WANG Wenli. Study on triaxial mechanical behaviors of frozen sand based on discrete element method[J]. Journal of Glaciology and Geocryology, 2019, 41(6): 1388-1396. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201906011.htm
    [7]
    宋丙堂, 刘恩龙, 张德, 等. 高温冻结粉土力学特性试验研究[J]. 冰川冻土, 2019, 41(3): 595-605. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201903011.htm

    SONG Bingtang, LIU Enlong, ZHANG De, et al. Experimental study on the mechanical properties of warm frozen silt soils[J]. Journal of Glaciology and Geocryology, 2019, 41(3): 595-605. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201903011.htm
    [8]
    赖远明, 程红彬, 高志华, 等. 冻结砂土的应力-应变关系及非线性莫尔强度准则[J]. 岩石力学与工程学报, 2007, 26(8): 1612-1617. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200708014.htm

    LAI Yuanming, CHENG Hongbin, GAO Zhihua, et al. Stress-strain relationships and nonlinear Mohr strength criterion of frozen sand clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1612-1617. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200708014.htm
    [9]
    马巍, 吴紫汪, 张长庆. 冻土的强度与屈服准则[J]. 冰川冻土, 1993, 15(1): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202202008.htm

    MA Wei, WU Ziwang, ZHANG Changqing. Strength and yield criterion of frozen soil[J]. Journal of Glaciology and Geocryology, 1993, 15(1): 129-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202202008.htm
    [10]
    张德, 刘恩龙, 刘星炎, 等. 冻结粉土强度准则探讨[J]. 岩土力学, 2018, 39(9): 3237-3245. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201809017.htm

    ZHANG De, LIU Enlong, LIU Xingyan, et al. Investigation on strength criterion for frozen silt soils[J]. Rock and Soil Mechanics, 2018, 39(9): 3237-3245. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201809017.htm
    [11]
    罗汀, 罗小映. 适用于冻土的广义非线性强度准则[J]. 冰川冻土, 2011, 33(4): 772-777. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201104010.htm

    LUO Ting, LUO Xiaoying. Applications of generalized non-linear strength theory to frozen soil[J]. Journal of Glaciology and Geocryology, 2011, 33(4): 772-777. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201104010.htm
    [12]
    CHEN D, MA W, MU Y, et al. A new strength criterion for frozen clay considering temperature effect[C]// Proceedings of China-Europe Conference on Geotechnical Engineering. Springer, Cham, 2018: 1340-1344.
    [13]
    LIU X Y, LIU E L, YU Q H. A new double hardening constitutive model for frozen mixed soils[J]. European Journal of Environmental and Civil Engineering, 2021, 25(11): 2002-2022.
    [14]
    ZHANG D, LIU E. Binary-medium-based constitutive model of frozen soils subjected to triaxial loading[J]. Results in Physics, 2019, 12: 1999-2008.
    [15]
    LAI Y M, JIN L, CHANG X X. Yield criterion and elasto- plastic damage constitutive model for frozen sandy soil[J]. International Journal of Plasticity, 2009, 25: 1177-1205.
    [16]
    LAI Y M, LIAO M K, HU K. A constitutive model of frozen saline sandy soil based on energy dissipation theory[J]. International Journal of Plasticity, 2016, 78: 84-113.
    [17]
    LIU E L, LAI Y M, WONG H, et al. An elastoplastic model for saturated freezing soils based on thermo- poromechanics[J]. International Journal of Plasticity, 2018, 107: 246-285.
    [18]
    WANG P, LIU E L, ZHI B. An elastic-plastic model for frozen soil from micro to macro scale[J]. Applied Mathematical Modelling, 2021, 91: 125-148.
    [19]
    WANG P, LIU E L, ZHI B, et al. A macro-micro viscoelastic-plastic constitutive model for saturated frozen soil[J]. Mechanics of Materials, 2020, 147: 103411.
    [20]
    陈世杰, 马巍, 李国玉, 等. 与医用CT配合使用的冻土三轴仪的研制与应用[J]. 岩土力学, 2017, 38(增刊2): 359-367. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2053.htm

    CHEN Shijie, MA Wei, LI Guoyu, et al. Development and application of triaxial apparatus of frozen soil used in conjunction with medical CT[J]. Rock and Soil Mechanics, 2017, 38(S2): 359-367. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2053.htm
    [21]
    FAN W H, YANG P, YANG Z H. Freeze-thaw impact on macropore structure of clay by 3D X-ray computed tomography[J]. Engineering Geology, 2021, 280: 105921.
    [22]
    LIU Bo, MA R M, FAN H M. Evaluation of the impact of freeze-thaw cycles on pore structure characteristics of black soil using X-ray computed tomography[J]. Soil and Tillage Research, 2021, 206: 104810.
    [23]
    郎颖娴, 梁正召, 段东, 等. 基于CT试验的岩石细观孔隙模型重构与并行模拟[J]. 岩土力学, 2019, 40(3): 1204-1212. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903042.htm

    LANG Yingxian, LIANG Zhengzhao, DUAN Dong, et al. Three-dimensional parallel numerical simulation of porous rocks based on CT technology and digital image processing[J]. Rock and Soil Mechanics, 2019, 40(3): 1204-1212. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903042.htm
    [24]
    黄质宏, 朱立军, 蒲毅彬, 等. 三轴应力条件下红粘土力学特性动态变化的CT分析[J]. 岩土力学, 2004, 25(8): 1215-1219. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200408010.htm

    HUANG Zhihong, ZHU Lijun, PU Yibin, et al. CT analysis of dynamic change of mechanical properties of red clay under triaxial stress[J]. Rock and Soil Mechanics, 2004, 25(8): 1215-1219. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200408010.htm
    [25]
    葛修润, 任建喜, 蒲毅彬, 等. 煤岩三轴细观损伤演化规律的CT动态试验[J]. 岩石力学与工程学报, 1999, 18(5): 497-502. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199905000.htm

    GE Xiurun, REN Jianxi, PU Yibin, et al. A real in time ct triaxial testing study of meso damage evolution law of coal[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(5): 497-502. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199905000.htm
    [26]
    蒲毅彬, 陈万业, 廖全荣. 陇东黄土湿陷过程的CT结构变化研究[J]. 岩土工程学报, 2000, 22(1): 49-54. http://www.cgejournal.com/cn/article/id/10450

    PU Yibin, CHEN Wanye, LIAO Quanrong. Research on CT structure changing for damping process of loess in Longdong[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 49-54. (in Chinese) http://www.cgejournal.com/cn/article/id/10450
    [27]
    马巍, 吴紫汪, 蒲毅彬, 等. 冻土三轴蠕变过程中结构变化的CT动态监测[J]. 冰川冻土, 1997, 19(1): 52-57. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT701.008.htm

    MA Wei, WU Ziwang, PU Yibin, et al. Monitoring the change of structures in frozen soil in triaxial creep process by CT[J]. Journal of Glaciology and Geocryology, 1997, 19(1): 52-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT701.008.htm
    [28]
    吴紫旺, 马巍, 蒲毅彬, 等. 冻土蠕变过程中结构的CT分析[J]. CT理论与应用研究, 1995, 4(3): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-CTLL503.011.htm

    WU Ziwang, MA Wei, PU Yibin, et al. CT analysis on structure of frozen soil in creep process[J]. Computerized Tomography Theory and Applications, 1995, 4(3): 31-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CTLL503.011.htm
    [29]
    刘增利, 李洪升, 朱元林, 等. 冻土初始与附加细观损伤的CT识别模型[J]. 冰川冻土, 2002, 24(5): 676-680. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200205040.htm

    LIU Zengli, LI Hongsheng, ZHU Yuanlin, et al. A distinguish model for initial and additional micro-damages on frozen soil[J]. Journal of Glaciolgy and Geocryology, 2002, 24(5): 676-680. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200205040.htm
    [30]
    刘增利, 张小鹏, 李洪升. 基于动态CT识别的冻土单轴压缩损伤本构模型[J]. 岩土力学, 2005, 26(4): 542-546. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200504007.htm

    LIU Zengli, ZHANG Xiaopeng, LI Hongsheng. A damage constitutive model for frozen soils under uniaxial compression based on CT dynamic distinguishing[J]. Rock and Soil Mechanics, 2005, 26(4): 542-546. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200504007.htm
    [31]
    土工试验方法标准: GB/T 50123—1999[S]. 北京: 中国计划出版社, 1999.

    Standard for Soil Test Method: GB/T 50123—1999[S]. Beijing: China Planning Press, 1999. (in Chinese)
    [32]
    赵淑萍, 马巍, 郑剑锋, 等. 不同温度条件下冻结兰州黄土单轴试验的CT实时动态监测[J]. 岩土力学, 2010, 31(增刊2): 92-97. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S2019.htm

    ZHAO Shuping, MA Wei, ZHENG Jianfeng, et al. CT real-time monitoring on frozen Lanzhou loess at different temperatures and under uniaxial loading[J]. Rock and Soil Mechanics, 2010, 31(S2): 92-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S2019.htm
    [33]
    刘恩龙, 罗开泰, 张树祎. 初始应力各向异性结构性土的二元介质模型[J]. 岩土力学, 2013, 34(11): 3103-3109. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201311012.htm

    LIU Enlong, LUO Kaitai, ZHANG Shuyi. Binary medium model for structured soils with initial stress-induced anisotropy[J]. Rock and Soil Mechanics, 2013, 34(11): 3103-3109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201311012.htm
    [34]
    沈珠江, 刘恩龙, 陈铁林. 岩土二元介质模型的一般应力应变关系[J]. 岩土工程学报, 2005, 27(5): 489-494. http://www.cgejournal.com/cn/article/id/11660

    SHEN Zhujiang, LIU Enlong, CHEN Tielin. Generalized stress-strain relationship of binary medium model for geological materials[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 489-494. (in Chinese) http://www.cgejournal.com/cn/article/id/11660
    [35]
    刘恩龙, 沈珠江. 结构性土的二元介质模型[J]. 水利学报, 2005, 36(4): 391-395. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200504002.htm

    LIU Enlong, SHEN Zhujiang. Binary medium model for structured soils[J]. Journal of Hydraulic Engineering, 2005, 36(4): 391-395. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200504002.htm
    [36]
    张德, 刘恩龙, 刘星炎, 等. 冻土二元介质模型探讨: 以-6℃冻结粉土为例[J]. 岩土工程学报, 2018, 40(1): 82-90. doi: 10.11779/CJGE201801007

    ZHANG De, LIU Enlong, LIU Xingyan, et al. Investigation on binary medium model taking frozen silt soils under-6℃ for example[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 82-90. (in Chinese) doi: 10.11779/CJGE201801007
    [37]
    李杭州, 熊光东, 郭彤, 等. 考虑统一强度理论的黄土二元介质模型研究[J]. 岩土工程学报, 2021, 43(增刊1): 53-57. doi: 10.11779/CJGE2021S1010

    LI Hangzhou, XIONG Guangdong, GUO Tong, et al. Binary-medium model for loess considering unified strength theory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 53-57. (in Chinese) doi: 10.11779/CJGE2021S1010
  • Cited by

    Periodical cited type(4)

    1. 王涛,凡红,王康任,周国庆,王亮亮. 高温冻土双屈服面统一本构模型及其验证. 岩土工程学报. 2025(01): 135-143 . 本站查看
    2. 屈俊童,王文彬,屈林河. 基于二元介质简化模型的滇池湖相沉积典型冻结泥炭质土力学特性研究. 岩土力学. 2025(01): 233-243 .
    3. 武颖利,任红磊,郭万里. 胶结砂砾石料剪切二元强度准则与本构模型研究. 岩土工程学报. 2025(03): 516-524 . 本站查看
    4. 王子振,王晓康,申凯翔,苏捷,赵志强,周卫东. 岩土材料中冰分布状态的冷冻电镜表征方法. 实验室研究与探索. 2024(02): 8-12+114 .

    Other cited types(2)

Catalog

    Article views (366) PDF downloads (135) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return