• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Tao, FAN Hong, WANG Kangren, ZHOU Guoqing, WANG Liangliang. A unified constitutive model for dual-yield surface for warm frozen soil and its verification[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 135-143. DOI: 10.11779/CJGE20231031
Citation: WANG Tao, FAN Hong, WANG Kangren, ZHOU Guoqing, WANG Liangliang. A unified constitutive model for dual-yield surface for warm frozen soil and its verification[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 135-143. DOI: 10.11779/CJGE20231031

A unified constitutive model for dual-yield surface for warm frozen soil and its verification

More Information
  • Received Date: October 19, 2023
  • Available Online: April 17, 2024
  • The constitutive model for warm frozen soil is crucial for accurately calculating the stress and deformation of frozen soil layers. Based on the modified Cambridge model and the dual-yield surface theory, taking into account the influences of cohesion and internal friction angle of warm frozen soil, the deformation characteristics of the specimens are described by the overall deformation curve εv-lnp. The hardening parameters of the current yield surface and reference yield surface are modified by stress path correlation factors. A unified constitutive model of dual-yield surface for warm frozen soil is proposed. The incremental form of the stress-strain relationship is obtained based on the elastic-plastic theory. A convenient method for determining the model parameters is provided. The consolidation parameters and potential strength parameters that reflect the current state of warm frozen soil are defined. An analysis of the dynamic cyclic relationship and interdependence between these parameters and hardening parameters is presented. The experimental data are used to validate the constructed constitutive model, and the results show that the proposed model can accurately predict the stress-strain behavior of warm frozen soil under conventional triaxial stress conditions.
  • [1]
    马巍, 王大雁. 中国冻土力学研究50 a回顾与展望[J]. 岩土工程学报, 2012, 34(4): 625-640. http://cge.nhri.cn/article/id/14543

    MA Wei, WANG Dayan. Studies on frozen soil mechanics in China in past 50 years and their prospect[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 625-640. (in Chinese) http://cge.nhri.cn/article/id/14543
    [2]
    朱元林, 张家懿, 彭万巍, 等. 冻土的单轴压缩本构关系[J]. 冰川冻土, 1992, 14(3): 210-217.

    ZHU Yuanlin, ZHANG Jiayi, PENG Wanwei, et al. Constitutive Relations of Frozen Soil in Uniaxial Compression[J]. Journal of Glaciology and Geocryology, 1992, 14(3): 210-217. (in Chinese)
    [3]
    苗天德, 魏雪霞, 张长庆. 冻土蠕变过程的微结构损伤理论[J]. 中国科学(B辑), 1995, 25(3): 309-317.

    (MIAO Tiande, WEI Xuexia, ZHANG Changqing. Creep of frozen soil based on microstructural damage mechanics[J]. Science in China (Series B), 1995, 25(3): 309-317. (in Chinese
    [4]
    LIU E L, LAI Y M, WONG H, et al. An elastoplastic model for saturated freezing soils based on thermo-poromechanics[J]. International Journal of Plasticity, 2018, 107: 246-285. doi: 10.1016/j.ijplas.2018.04.007
    [5]
    CHANG D, LAI Y M, ZHANG M Y. A meso-macroscopic constitutive model of frozen saline sandy soil based on homogenization theory[J]. International Journal of Mechanical Sciences, 2019, 159: 246-259. doi: 10.1016/j.ijmecsci.2019.06.002
    [6]
    WANG P, LIU E L, ZHI B, et al. A macro–micro viscoelastic-plastic constitutive model for saturated frozen soil[J]. Mechanics of Materials, 2020, 147: 103411. doi: 10.1016/j.mechmat.2020.103411
    [7]
    FU T T, ZHU Z W, ZHANG D, et al. Research on damage viscoelastic dynamic constitutive model of frozen soil[J]. Cold Regions Science and Technology, 2019, 160: 209-221. doi: 10.1016/j.coldregions.2019.01.017
    [8]
    张德, 刘恩龙, 刘星炎, 等. 基于修正Mohr-Coulomb屈服准则的冻结砂土损伤本构模型[J]. 岩石力学与工程学报, 2018, 37(4): 978-986.

    ZHANG De, LIU Enlong, LIU Xingyan, et al. A damage constitutive model for frozen sandy soils based on modified Mohr-Coulomb yield criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4): 978-986. (in Chinese)
    [9]
    张革, 刘恩龙. 基于CT动态扫描的冻土细观二元介质本构模型[J]. 岩土工程学报, 2023, 45(9): 1888-1896. doi: 10.11779/CJGE20220629

    ZHANG Ge, LIU Enlong. Binary-medium constitutive model for frozen soils based on CT dynamic scanning[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1888-1896. (in Chinese) doi: 10.11779/CJGE20220629
    [10]
    LAI Y M, YANG Y G, CHANG X X, et al. Strength criterion and elastoplastic constitutive model of frozen silt in generalized plastic mechanics[J]. International Journal of Plasticity, 2010, 26(10): 1461-1484. doi: 10.1016/j.ijplas.2010.01.007
    [11]
    MA D D, MA Q Y, YAO Z M, et al. Static-dynamic coupling mechanical properties and constitutive model of artificial frozen silty clay under triaxial compression[J]. Cold Regions Science and Technology, 2019, 167: 102858. doi: 10.1016/j.coldregions.2019.102858
    [12]
    ZHAO Y H, LAI Y M, PEI W S, et al. An anisotropic bounding surface elastoplastic constitutive model for frozen sulfate saline silty clay under cyclic loading[J]. International Journal of Plasticity, 2020, 129: 102668. doi: 10.1016/j.ijplas.2020.102668
    [13]
    雷乐乐, 王大雁, 李栋伟, 等. 考虑应力水平影响的冻结黏土变形特性[J]. 岩石力学与工程学报, 2021, 40(增刊1): 2905-2912.

    LEI Lele, WANG Dayan, LI Dongwei, et al. Deformation characteristics of frozen clay with considering the influence of mean principal stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S1): 2905-2912. (in Chinese)
    [14]
    NISHIMURA S, WANG J Y. A simple framework for describing strength of saturated frozen soils as multi-phase coupled system[J]. Géotechnique, 2019, 69(8): 659-671.
    [15]
    汪恩良, 任志凤, 韩红卫, 等. 超低温冻结黏土单轴抗压力学性质试验研究[J]. 岩土工程学报, 2021, 43(10): 1851-1860. doi: 10.11779/CJGE202110011

    WANG Enliang, REN Zhifeng, HAN Hongwei, et al. Experimental study on uniaxial compressive strength of ultra-low temperature frozen clay[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1851-1860. (in Chinese) doi: 10.11779/CJGE202110011
    [16]
    ZHAO Y H, ZHANG M Y, GAO J. Research progress of constitutive models of frozen soils: a review[J]. Cold Regions Science and Technology, 2023, 206: 103720.
    [17]
    MA F, LIU E, SONG B, et al. A poromechanics-based constitutive model for warm frozen soil[J]. Cold Regions Science and Technology, 2022, 199: 103555.
    [18]
    宋丙堂, 刘恩龙, 张德, 等. 高温冻结粉土力学特性试验研究[J]. 冰川冻土, 2019, 41(3): 595-605.

    SONG Bingtang, LIU Enlong, ZHANG De, et al. Experimental study on the mechanical properties of warm frozen silt soils[J]. Journal of Glaciology and Geocryology, 2019, 41(3): 595-605. (in Chinese)
    [19]
    路贵林. 多年冻土区高温冻土力学特性试验研究[D]. 徐州: 中国矿业大学, 2015.

    LU Guilin. Experimental Study on Mechanical Properties of High Temperature Frozen Soil in Permafrost Regions[D]. Xuzhou: China University of Mining and Technology, 2015. (in Chinese)
    [20]
    LIAO M K, LAI Y M, LIU E L, et al. A fractional order creep constitutive model of warm frozen silt[J]. Acta Geotechnica, 2017, 12(2): 377-389.
    [21]
    LAI Y M, LI J B, LI Q Z. Study on damage statistical constitutive model and stochastic simulation for warm ice-rich frozen silt[J]. Cold Regions Science and Technology, 2012, 71: 102-110.
    [22]
    ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A. Yielding of clays in states wetter than critical[J]. Géotechnique, 1963, 13(3): 211-240.
    [23]
    ROSCOE K H, BURLAND J. On the Generalized Stress-Strain Behaviour of Wet Clay[M]. Cambrige: Cambridge University Press, 1968.
    [24]
    姚仰平, 田易川, 崔文杰. 理想膨胀性非饱和土UH模型[J]. 岩土工程学报, 2023, 45(6): 1103-1112. doi: 10.11779/CJGE20220294

    YAO Yangping, TIAN Yichuan, CUI Wenjie. UH model for ideal expansive unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1103-1112. (in Chinese) doi: 10.11779/CJGE20220294
  • Cited by

    Periodical cited type(22)

    1. 谢朋,李葱葱,段虎辰,文海家,李良勇,李昭捷,王永卫. 隧道围岩透明相似材料强度特征与配合比研究. 湖南大学学报(自然科学版). 2025(01): 219-227 .
    2. 钱伟丰,黄明,曾子圣,王禹,胡艳峰. 双向起伏地表浅埋盾构隧道开挖面三维被动失稳极限支护压力上限解. 应用基础与工程科学学报. 2025(01): 273-288 .
    3. 应宏伟,吕忠泽. 考虑刀土摩擦的砂土盾构隧道开挖面支护压力计算方法. 中南大学学报(自然科学版). 2024(03): 1082-1091 .
    4. 夏俊偉. 砂卵石地层中地铁盾构隧道开挖面稳定性离散元数值模拟研究. 铁道勘察. 2024(02): 140-146 .
    5. 施静怡,吴能森,刘强. 静压桩在成层地基中挤土效应的可视化研究. 河南城建学院学报. 2024(02): 20-26 .
    6. 张子新,李小昌,李佳宇. 软土地层盾构掘进土体稳定性模型试验研究. 土木与环境工程学报(中英文). 2024(03): 41-51 .
    7. 刘功明,黄建坤,杜金阳,张健. 适用于植物生长的透明土制备及其性能试验. 农业工程学报. 2024(15): 76-84 .
    8. 何晟亚,李亮,李恒一,张建经,叶亮,文海家,段虎辰,谢朋. 可视化软土隧道模型试验相似材料的配置及其物理力学特性研究. 现代隧道技术. 2024(04): 202-209 .
    9. 刘维正,师嘉文,谭际鸣,董军,豆小天. 水位变化下浅埋盾构隧道开挖面渗透力与稳定性研究. 中南大学学报(自然科学版). 2024(10): 3833-3848 .
    10. 张耀星,梁连,黄明. 盾构隧道与箱涵交叠下穿铁路开挖面稳定性上限分析. 公路工程. 2024(06): 64-71 .
    11. 卜璟,王琛. 基于透明土试验技术的盾构侧穿桩基影响机制研究. 江苏建筑. 2023(02): 67-72 .
    12. 雷华阳,刘敏,钟海晨,许英刚,袁大军. 黏土地层盾构隧道开挖面失稳离心试验及数值模拟. 天津大学学报(自然科学与工程技术版). 2023(05): 503-512 .
    13. 苏占东,周思哲,王成虎,孙进忠,曾扬农,张建勇,张明磊,王磊,朱卓辉,李小瑞. 工程岩体物理模拟研究中实验材料的选择与应用. 地质论评. 2023(03): 1133-1149 .
    14. 谢丽辉,丁军军. 上软下硬地层盾构隧道开挖面稳定性数值模拟研究. 城市道桥与防洪. 2023(05): 195-199+24-25 .
    15. 李同海. 考虑断层边界影响的盾构掘进安全距离界定方法. 福建交通科技. 2023(04): 60-64 .
    16. 汪联欢. 消力池开挖施工对临近泄洪洞安全性的影响. 水利科学与寒区工程. 2023(11): 133-137 .
    17. 雷华阳,刘敏,程泽宇,钟海晨. 透明黏土盾构隧道开挖面失稳扩展过程和失稳特征研究. 岩石力学与工程学报. 2022(06): 1235-1245 .
    18. 王均山,衣凡,连文博,张建铭,何志伟,谢育杨,仲志武,程雪松. 软土地区地铁盾构隧道引发地表沉陷实例研究. 建筑结构. 2022(S1): 2871-2877 .
    19. 吕玺琳,赵庾成,曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验. 隧道与地下工程灾害防治. 2022(03): 67-76 .
    20. 赵辰洋,罗毛毛,邱静怡,倪芃芃,赵锋烽. 盾构隧道施工引起地层变形预测方法综述. 隧道与地下工程灾害防治. 2022(03): 31-46 .
    21. 卢谅,何兵,肖亮,王宗建,马书文,林浩鑫. 基于透明土的成层土中CPT贯入试验研究. 岩土工程学报. 2022(12): 2215-2224 . 本站查看
    22. 刘朝钦. 软弱地层超大矩形顶管盾构隧道开挖面稳定性研究. 高速铁路技术. 2022(06): 36-40 .

    Other cited types(23)

Catalog

    Article views (267) PDF downloads (93) Cited by(45)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return