• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Yue, LIU Wenjun, CAI Jing, DAI Xuan, SHUI Weihou, DONG Bingyin. Simulation of dynamic compaction replacement using ALE method and tamping parameters[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1471-1479. DOI: 10.11779/CJGE20220480
Citation: LI Yue, LIU Wenjun, CAI Jing, DAI Xuan, SHUI Weihou, DONG Bingyin. Simulation of dynamic compaction replacement using ALE method and tamping parameters[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1471-1479. DOI: 10.11779/CJGE20220480

Simulation of dynamic compaction replacement using ALE method and tamping parameters

More Information
  • Received Date: April 20, 2022
  • Available Online: February 20, 2023
  • In order to reveal the deformation characteristics and foundation reinforcement laws due to dynamic compaction replacement (DCR), the finite difference principle-based arbitrary Lagrange Euler (ALE) method is adopted in the DCR simulation. A three-dimensional dynamic FEM model is established based on the ALE method. The process of foundation reinforcement under single tamping and continuous dynamic compaction replacement is discussed respectively. The influences of various parameters on the reinforcement effects of high-energy DCR are then analyzed and applied in a real project. The research results indicate that the ALE simulation method can describe the flow deformation of gravel layer during DCR, and can be used for simulating continuous dynamic compaction. The absorption of ramming energy due to backfilling gravel is notable that the reinforcement effects of foundation soil can be weakened as consequence. Therefore, the "less filling-more ramming" named DCR strategy is proved to be more reasonable. The rammer diameter, as much as 2.5 m, is beneficial to the increase of the reinforcement depth of foundation soil when the energy level of DCR equals 8000 kN·m. In case of the rammer height-diameter ratio between 0.3 and 0.5, the ramming energy is fully used in order to form composite foundation with even bearing capacity. The conclusions can be used as reference for comparison and selection of construction parameters of DCR.
  • [1]
    MENARD L, BROISE Y. Theoretical and practical aspects of dynamic consolidation[J]. Géotechnique, 1975, 25(1): 3-18. doi: 10.1680/geot.1975.25.1.3
    [2]
    LO K W, OOI P L, LEE S L. Dynamic replacement and mixing of organic soils with sand charges[J]. Journal of Geotechnical Engineering, 1990, 116(10): 1463-1482. doi: 10.1061/(ASCE)0733-9410(1990)116:10(1463)
    [3]
    马永峰. 不同能级强夯置换处理软土地基现场试验[J]. 中国海洋大学学报(自然科学版), 2018, 48(7): 111-122. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201807014.htm

    MA Yongfeng. Field test of dynamic replacement method on soft soil foundation under different energy-levels[J]. Periodical of Ocean University of China, 2018, 48(7): 111-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201807014.htm
    [4]
    闫迎州. 错点强夯置换处理厚层海相淤积软土路基的机理研究[D]. 南京: 东南大学, 2017.

    YAN Yingzhou. Research on Mechanism of Dynamic Replacement Method for Thick Soft Soil Subgrade[D]. Nanjing: Southeast University, 2017. (in Chinese)
    [5]
    王宏祥, 闫澍旺, 冯守中. 强夯置换墩法处理公路软基的机制研究[J]. 岩土力学, 2009, 30(12): 3753-3758. doi: 10.3969/j.issn.1000-7598.2009.12.033

    WANG Hongxiang, YAN Shuwang, FENG Shouzhong. Study of mechanism of dynamic compaction replacement for reinforcing highway soft roadbed[J]. Rock and Soil Mechanics, 2009, 30(12): 3753-3758. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.12.033
    [6]
    姚占勇, 周冲, 蒋红光, 等. 基于帽盖模型的强夯地基应力–应变特征与有效加固范围分析[J]. 岩石力学与工程学报, 2018, 37(4): 969-977. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201804019.htm

    YAO Zhanyong, ZHOU Chong, JIANG Hongguang, et al. Stress-strain characteristics and effective range of improvement under dynamic compaction based on capped yield hardening model[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4): 969-977. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201804019.htm
    [7]
    ZHOU C, YANG C J, QI H, et al. Evaluation on improvement zone of foundation after dynamic compaction[J]. Applied Sciences, 2021, 11(5): 2156. doi: 10.3390/app11052156
    [8]
    姚仰平, 张北战. 基于体应变的强夯加固范围研究[J]. 岩土力学, 2016, 37(9): 2663-2671. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201609032.htm

    YAO Yangping, ZHANG Beizhan. Reinforcement range of dynamic compaction based on volumetric strain[J]. Rock and Soil Mechanics, 2016, 37(9): 2663-2671. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201609032.htm
    [9]
    SOŁOWSKI W T, SLOAN S W, KANTY P T, et al. Numerical simulation of a small scale dynamic replacement stone column creation experiment[C]// International Conference on Particle-based Methods-Fundamentals and Applications. Stuttagrt, 2013.
    [10]
    周健, 邓益兵, 贾敏才, 等. 基于颗粒单元接触的二维离散-连续耦合分析方法[J]. 岩土工程学报, 2010, 32(10): 1479-1484. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract8365.shtml

    ZHOU Jian, DENG Yibing, JIA Mincai, et al. Coupling method of two-dimensional discontinuum- continuum based on contact between particle and element[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10): 1479-1484. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract8365.shtml
    [11]
    谢新宇, 徐玉胜, 吴健, 等. 软土地基连续强夯置换碎石墩的数值分析[J]. 西北地震学报, 2011, 33(3): 249-254. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201103008.htm

    XIE Xinyu, XU Yusheng, WU Jian, et al. Numerical simulation of stone column replacement by consecutive dynamic compaction in soft ground[J]. Northwestern Seismological Journal, 2011, 33(3): 249-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201103008.htm
    [12]
    郑凌逶, 周风华. 强夯置换软土中碎石墩形成过程的试验研究[J]. 岩土力学, 2014, 35(1): 90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401013.htm

    ZHENG Lingwei, ZHOU Fenghua. Experimental study of forming process of replacement pier in soft soil using dynamic replacement method[J]. Rock and Soil Mechanics, 2014, 35(1): 90-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401013.htm
    [13]
    郑凌逶, 周风华, 谢新宇. 强夯置换中碎石运动机制和成墩过程的数值模拟[J]. 岩土工程学报, 2013, 35(11): 2068-2075. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15338.shtml

    ZHENG Lingwei, ZHOU Fenghua, XIE Xinyu. Numerical simulation of forming of replacement piers during a dynamic replacement process[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2068-2075. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15338.shtml
    [14]
    王一雯, 郑成, 吴卫国. 弹性楔形体入水砰击载荷及结构响应的理论计算与数值模拟研究[J]. 爆炸与冲击, 2021, 41(11): 100-115. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202111010.htm

    WANG Yiwen, ZHENG Cheng, WU Weiguo. On slamming load and structural response of a flexible wedge via analytical methods and numerical simulations[J]. Explosion and Shock Waves, 2021, 41(11): 100-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202111010.htm
    [15]
    彭依云, 王铭明, 高长伟. 近场水下爆炸冲击波对板架结构毁伤特性研究[J]. 船舶力学, 2020, 24(8): 1081-1090. https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX202008013.htm

    PENG Yiyun, WANG Mingming, GAO Changwei. Research on the damage characteristics of grillage structures subjected to near-field underwater blast wave[J]. Journal of Ship Mechanics, 2020, 24(8): 1081-1090. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX202008013.htm
    [16]
    YANG X L, ZHANG G L, ZHANG J M, et al. Dynamic response of falling liquid storage container under transient impact[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2018, 35(5): 760-769.
    [17]
    LIU S, TANG X W, LI J. A decoupled Arbitrary Lagrangian- Eulerian method for large deformation analysis of saturated sand[J]. Soils and Foundations, 2022, 62(2): 101110.
    [18]
    张智超, 刘汉龙, 陈育民, 等. 触地爆炸土体弹坑的多物质ALE法分析[J]. 解放军理工大学学报(自然科学版), 2013, 14(1): 69-74. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL201301014.htm

    ZHANG Zhichao, LIU Hanlong, CHEN Yumin, et al. Analysis of contact explosion-induced crater of soil using multi-material ALE method[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2013, 14(1): 69-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL201301014.htm
    [19]
    毕庆涛, 肖昭然, 丁树云, 等. 静压桩压入过程的数值模拟[J]. 岩土工程学报, 2011, 33(增刊2): 74-77. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14324.shtml

    BI Qingtao, XIAO Zhaoran, DING Shuyun, et al. Numerical modelling of penetrating of jacked piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S2): 74-77. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14324.shtml
    [20]
    刘开富, 谢新宇, 吴长富, 等. 弹塑性土质边坡的ALE方法有限元分析[J]. 岩土力学, 2011, 32(增刊1): 680-685. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1120.htm

    LIU Kaifu, XIE Xinyu, WU Changfu, et al. ALE method finite element analysis of elastoplastic soil slope[J]. Rock and Soil Mechanics, 2011, 32(S1): 680-685. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1120.htm
    [21]
    ZERWER A, CASCANTE G, HUTCHINSON J. Parameter estimation in finite element simulations of Rayleigh waves[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(3): 250-261.
    [22]
    ISHIBASHI I, ZHANG X J. Unified dynamic shear moduli and damping ratios of sand and clay[J]. Soils and Foundations, 1993, 33(1): 182-191.
    [23]
    曾庆军, 李茂英, 李大勇. 强夯置换深度的估算[J]. 岩土工程学报, 2002, 24(5): 608-611. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract11046.shtml

    ZENG Qingjun, LI Maoying, LI Dayong. Estimation of the displacement depth in dynamic replacement[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(5): 608-611. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract11046.shtml
    [24]
    田建勃, 韩晓雷, 于清桦, 等. 碎石垫层强度与变形特性试验研究和有限元分析[J]. 岩土力学, 2014, 35(1): 83-89, 97. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401012.htm

    TIAN Jianbo, HAN Xiaolei, YU Qinghua, et al. Experimental study and finite element analysis of strength and deformation characteristics of gravel cushion[J]. Rock and Soil Mechanics, 2014, 35(1): 83-89, 97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401012.htm
    [25]
    赵民, 贺可强, 刘强, 等. 强夯置换滨海软土成墩效果模型试验研究[J]. 建筑结构学报, 2021, 42(10): 149-156. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202110017.htm

    ZHAO Min, HE Keqiang, LIU Qiang, et al. Model test on pier formation effect of dynamic replacement in coastal soft soil[J]. Journal of Building Structures, 2021, 42(10): 149-156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202110017.htm
    [26]
    OSHIMA A, TAKADA N, TANAKA Y. Relation between compacted area and RAM momentum by heavy tamping-density and strength increases due to single point tamping[C]// Proceed of 14th International on 511 Mechanics Foundation, 1997: 1641-1644.
    [27]
    水伟厚. 对强夯置换概念的探讨和置换墩长度的实测研究[J]. 岩土力学, 2011, 32(增刊2): 502-506. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2083.htm

    SHUI Weihou. Exploring concept of dynamic replacement and measured length of replacement pier[J]. Rock and Soil Mechanics, 2011, 32(S2): 502-506. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2083.htm
  • Related Articles

    [1]A study of multi-field coupling continuum numerical method for exploiting CH4 by CO2 replacement in deep-sea formation[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240762
    [2]LU Meng-meng, AO Zu-rui, LI Dong-xu, LI Chuan-xun. Consolidation analysis of composite foundation with multiple and reinforcements by granular columns with high replacement ratio impervious piles[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1253-1260. DOI: 10.11779/CJGE202107010
    [3]LIU Xue-zhu, ZHANG Yan-shu, GU Meng-na, ZHUANG Hai-yang. Effects of reinforcement replacement rates at pit bottom on safety of deep foundation pit of Xianghu metro subway station in Hangzhou[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 136-142. DOI: 10.11779/CJGE2016S2022
    [4]ZHENG Ling-wei, ZHOU Feng-hua, XIE Xin-yu. Numerical simulation of forming of replacement piers during a dynamic replacement process[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2068-2075.
    [5]DONG Qian, KUANG Long-chuan, KONG Fang-lin. Reinforcement assessment and engineering practice of dynamic compaction for crushed rock soil fill foundation in mountainous areas[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 330-334.
    [6]ZHANG Yu, FANG Jian-hong, LIU Jian-kun, XU An-hua. Field tests on reinforcement effects of ground treatment of composite foundation in saline soils by dynamic compaction replacement[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 251-254.
    [7]TENG Kai. Evaluation and improvement of formulas for replacement depth under dynamic compaction[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(7): 994-998.
    [8]QIN Aifang, HU Zhongxiong, PENG Shijuan. Depth of soil stabilization in passive area of foundation pits for Shanghai soft clay[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 935-940.
    [9]ZENG Qingjun, LI Maoying, LI Dayong. Estimation of the displacement depth in dynamic replacement[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(5): 608-611.
    [10]Qian Zheng, Li Guang-wu, Wang Wen-kui. Dynamical Consolidation Method for Strengthing Soft Foundation[J]. Chinese Journal of Geotechnical Engineering, 1980, 2(1): 27-42.
  • Other Related Supplements

  • Cited by

    Periodical cited type(5)

    1. 徐其. 激振荷载作用下桩基础变形及力学响应特性试验研究. 江西建材. 2024(12): 267-269+272 .
    2. 李永焕,刘志贺,饶勤波,过锦,胡海波,刘秋媛,杨萤. 考虑空间效应的基坑开挖对邻近管线的影响分析. 长江科学院院报. 2023(05): 125-130 .
    3. 李斌,景立平,王友刚,涂健,齐文浩. 水平低周往复荷载作用下核岛桩基抗震性能试验研究. 岩土工程学报. 2023(10): 2119-2128 . 本站查看
    4. 曹小林,周凤玺,戴国亮,龚维明. 激振荷载作用下桩基础动力响应的现场试验分析. 岩土工程学报. 2023(S1): 171-175 . 本站查看
    5. 曹小林,周凤玺,戴国亮. 水平荷载作用下饱和土与单桩的相互作用动力响应分析. 岩土工程学报. 2023(S2): 73-78 . 本站查看

    Other cited types(6)

Catalog

    Article views (284) PDF downloads (73) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return