Citation: | LI Bin, JING Liping, WANG Yougang, TU Jian, QI Wenhao. Experimental study on seismic behavior of nuclear-island pile foundation under cyclic lateral loading[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2119-2128. DOI: 10.11779/CJGE20220844 |
[1] |
朱升冬, 陈国兴, 蒋鹏程, 等. 松软场地上桩筏基础AP1000核岛结构的三维非线性地震反应特性[J]. 工程力学, 2021, 38(1): 129-142. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202101014.htm
ZHU Shengdong, CHEN Guoxing, JIANG Pengcheng, et al. 3d nonlinear response characteristics of the pile-raft-supported ap1000 nuclear island building in soft deposits subjected to strong ground motions[J]. Engineering Mechanics, 2021, 38(1): 129-142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202101014.htm
|
[2] |
陈达. 核能与核安全: 日本福岛核事故分析与思考[J]. 南京航空航天大学学报, 2012, 44(5): 597-602. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201205004.htm
CHEN Da. Nuclear energy and nuclear safety: analysis and reflection about Fukushima nuclear accident[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(5): 597-602. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201205004.htm
|
[3] |
景立平, 吴凡, 李嘉瑞, 等. 土-桩基-隔震支座-核岛地震反应试验研究[J]. 岩土力学, 2022, 43(9): 2483-2492. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202209014.htm
JING Liping, WU Fan, LI Jiarui, et al. Experimental study on seismic response of soil-pile foundation-isolation supportnuclear island[J]. Rock and Soil Mechanics, 2022, 43(9): 2483-2492. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202209014.htm
|
[4] |
刘晶波, 王菲, 孙运轮. 大飞机撞击钢筋混凝土核安全壳模型试验研究[J]. 建筑结构学报, 2022, 43(8): 185-195. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202208018.htm
LIU Jingbo, WANG Fei, SUN Yunlun. Experimental study on a large aircraft impacting reinforced concrete nuclear containment structure model[J]. Journal of Building Structures, 2022, 43(8): 185-195. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202208018.htm
|
[5] |
ALLOTEY N, EI NAGGAR M H. A numerical study into lateral cyclic nonlinear soil-pile response[J]. Canadian Geotechnical Journal, 2008, 45(9): 1268-1281. doi: 10.1139/T08-050
|
[6] |
ASHOUR M, HELAL A. Contribution of vertical skin friction to the lateral resistance of large-diameter shafts[J]. Journal of Bridge Engineering, 2014, 19(2): 289-302. doi: 10.1061/(ASCE)BE.1943-5592.0000505
|
[7] |
ABBASI H, BINESH S, LASHKARI A. Using a state-dependent constitutive model in strain wedge method for laterally loaded piles in sand[J]. Soils and Foundations, 2019, 59(2): 271-283. doi: 10.1016/j.sandf.2018.10.007
|
[8] |
ASHOUR M, NORRIS G. Modeling lateral soil-pile response based on soil-pile interaction[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(5): 420-428. doi: 10.1061/(ASCE)1090-0241(2000)126:5(420)
|
[9] |
ASHOUR M, PILLING P, NORRIS G. Lateral behavior of pile groups in layered soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(6): 580-592. doi: 10.1061/(ASCE)1090-0241(2004)130:6(580)
|
[10] |
BROWN DAN A, CHINE-FENG S. Some numerical experiments with a three dimensional finite element model of a laterally loaded pile[J]. Computers and Geotechnics, 1991, 12(2): 149-162. doi: 10.1016/0266-352X(91)90004-Y
|
[11] |
YANG K, LIANG R. Numerical solution for laterally loaded piles in a two-layer soil profile[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11): 1436-43. doi: 10.1061/(ASCE)1090-0241(2006)132:11(1436)
|
[12] |
汪刚, 景立平, 李嘉瑞, 等. 桩-土-上部结构动力相互作用振动台试验研究[J]. 岩石力学与工程学报, 2021, 40(增刊2): 3414-3424. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2040.htm
WANG Gang, JING Liping, LI Jiarui, et al. Shaking table test study on seismic-soil-pilesuperstructure-interaction[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3414-3424. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2040.htm
|
[13] |
LEMNITZER A, KHALILI-TEHRANI P, AHLBERG E R, et al. Nonlinear efficiency of bored pile group under lateral loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1673-1685.
|
[14] |
ZHOU M, YUAN W, ZHANG Y. Seismic material properties of reinforced concrete and steel casing composite concrete in elevated pile-group foundation[J]. Polish Maritime Research, 2015, 22(S1): 141-8.
|
[15] |
WANG X, YE A, HE Z, et al. Quasi-static cyclic testing of elevated RC pile-cap foundation for bridge structures[J]. Journal of Bridge Engineering, 2016, 21(2): 04015042.
|
[16] |
GUAN Z, CHEN X, LI J. Experimental investigation of the seismic performance of bridge models with conventional and rocking pile group foundations[J]. Engineering Structures, 2018, 168: 889-902.
|
[17] |
张永亮, 宁贵霞, 陈兴冲, 等. 桥梁群桩基础非线性受力特征及影响参数分析[J]. 公路交通科技, 2018, 35(7): 42-49. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201807007.htm
ZHANG Yongliang, NING Guixia, CHEN Xingchong, et al. Analysis on nonlinear loading characteristics and influence parameters of group pile foundation of bridge[J]. Journal of Highway and Transportation Research and Development, 2018, 35(7): 42-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201807007.htm
|
[18] |
LIU T, WANG X, YE A. Roles of pile-group and cap-rotation effects on seismic failure mechanisms of partially-embedded bridge foundations: Quasi-static tests[J]. Soil Dynamics and Earthquake Engineering, 2020, 132: 106074.
|
[19] |
景立平, 汪刚, 李嘉瑞, 等. 土-桩基-核岛体系动力相互作用振动台试验及数值模拟[J]. 岩土工程学报, 2022, 44(1): 163-172, I0009, I0010. doi: 10.11779/CJGE202201016
JING Liping, WANG Gang, LI Jiarui, et al. Shaking table tests and numerical simulations of dynamic interaction of soil-pile-nuclear island system[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 163-172, I0009, I0010. (in Chinese) doi: 10.11779/CJGE202201016
|
[20] |
WANG X, YE A, SHANG Y, et al. Shake-table investigation of scoured RC pile-group-supported bridges in liquefiable and nonliquefiable soils[J]. Earthquake Engineering & Structural Dynamics, 2019, 48(11): 1217-37.
|
[21] |
SERRAS DIONISIOS N, PANAGAKI STAMATIA D, SKALOMENOS KONSTANTINOS A, et al. Inelastic lateral and seismic behaviour of concrete-filled steel tubular pile foundations[J]. Soil Dynamics and Earthquake Engineering, 2021, 143: 106657.
|
[22] |
ELNASHAI A S, DI SARNO L. Fundamentals of Earthquake Engineering[M]. Chichester, West Sussex, UK: Wiley, 2008.
|
[23] |
崔春义, 辛宇, 许成顺, 等. Pasternak层状地基中群桩水平动力响应解析解答[J]. 岩土工程学报, 2023, 45(5): 893-902. doi: 10.11779/CJGE20220235
CUI Chunyi, XIN Yu, XU Chengshun, et al. Analytical solutions for horizontal dynamic response for pile groups based on Pasternak model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 893-902. (in Chinese) doi: 10.11779/CJGE20220235
|
[24] |
SUN S, MA D, ZHOU G. Applications and analysis of the composite wall on construction in heilongjiang province[J]. Procedia Engineering, 2015, 118: 160-8.
|
[25] |
ZHANG Y, CHEN X, ZHANG X, et al. Nonlinear response of the pile group foundation for lateral loads using pushover analysis[J]. Earthquakes and Structures, 2020, 19(4): 273-86.
|
[1] | Multi-index and thresholds for seismic performance evaluation of prefabricated subway station structure[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240829 |
[2] | DAI Xuan, MA Yunxiang, WEI Shaowei, WEI Peiyong, HUO Haifeng, CAI Degou, LI Zhao. Seismic performance analysis of frame beams-reinforced slope under different earthquake intensities[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 147-152. DOI: 10.11779/CJGE2023S20019 |
[3] | LUO Min-min, XU Chao, CHEN Yun, YANG Yang, LIANG Cheng. Influence factors for seismic performance of bridge abutment with geosythetic-reinforced soil (GRS)[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 215-219. DOI: 10.11779/CJGE2022S2047 |
[4] | ZHANG Xi-yin, WANG Wan-ping, YU Sheng-sheng, GUAN Jia-da, QIN Xun-cai. Seismic performance and influencing factors of pile foundation of bridges in permafrost regions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1635-1643. DOI: 10.11779/CJGE202209008 |
[5] | LI Sheng, ZHUANG Hai-yang, WANG Wei, DONG Zheng-fang. Seismic performance of single-story subway station structures with different types of intermediate columns[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1905-1914. DOI: 10.11779/CJGE202110017 |
[6] | YANG Jing, YUN Long, ZHUANG Hai-yang, REN Jia-wei, CHEN Wen-bin. Seismic performance levels of frame-type subway underground station with three layers and three spans[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2240-2248. DOI: 10.11779/CJGE202012010 |
[7] | ZHONG Zi-lan, ZHEN Li-bin, SHEN Yi-yao, ZHAO Mi, DU Xiu-li. Seismic performance evaluation of underground structures using endurance time analysis[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1482-1490. DOI: 10.11779/CJGE202008013 |
[8] | LU De-chun, LI Qiang, DU Xiu-li, WU Chun-yu. Seismic performance of subway station based on failure model control[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1400-1407. DOI: 10.11779/CJGE201908003 |
[9] | KONG Xian-jing, PANG Rui, ZOU De-gao, XU Bin, ZHOU Yang. Seismic performance evaluation of high CFRDs based on incremental dynamic analysis[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 978-984. DOI: 10.11779/CJGE201806002 |
[10] | ZHENG Gang, ZHANG Nan, BA Zhen-ning, ZHANG Tian-qi. Seismic performance of PHC pipe piles in layered soft soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 506-510. |