• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Bin, JING Liping, WANG Yougang, TU Jian, QI Wenhao. Experimental study on seismic behavior of nuclear-island pile foundation under cyclic lateral loading[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2119-2128. DOI: 10.11779/CJGE20220844
Citation: LI Bin, JING Liping, WANG Yougang, TU Jian, QI Wenhao. Experimental study on seismic behavior of nuclear-island pile foundation under cyclic lateral loading[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2119-2128. DOI: 10.11779/CJGE20220844

Experimental study on seismic behavior of nuclear-island pile foundation under cyclic lateral loading

More Information
  • Received Date: July 03, 2022
  • Available Online: March 05, 2023
  • The pile group is the main form of nuclear island structure in non-bedrock site. As the structure of the nuclear island has a large mass, large stiffness and concentrated mass distribution, the piles will have a high axial compression ratio. To study the seismic performance of the pile group with a high axial compression ratio, the cyclic lateral loading tests on the pile group in silty clay are carried out, and the failure mode and hysteretic characteristics as well as the variation law of pile deformation and internal force distribution are analyzed. The test results show that the compression-flexural failure mode occurs at the pile head, the connection between pile head and cap is the most serious, and the failure area extends to the depth of 5 times the pile diameter below the pile top. The relationship of plastic hinge length is as follows: front pile > back pile > side pile > middle pile. The inflection points of the front pile and the middle pile are between 1D and 3D below the pile top. The back pile has two inflection points, which are respectively between 3D~5D and 5d~7d below the pile top. The side pile has no inflection point. The deflection of the pile presents an inverted umbrella shape. At the elastic working stage, the load distribution proportion of the front pile and back pile is 24%, that of the side pile is 21%, and that of the middle pile is 10%.
  • [1]
    朱升冬, 陈国兴, 蒋鹏程, 等. 松软场地上桩筏基础AP1000核岛结构的三维非线性地震反应特性[J]. 工程力学, 2021, 38(1): 129-142. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202101014.htm

    ZHU Shengdong, CHEN Guoxing, JIANG Pengcheng, et al. 3d nonlinear response characteristics of the pile-raft-supported ap1000 nuclear island building in soft deposits subjected to strong ground motions[J]. Engineering Mechanics, 2021, 38(1): 129-142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202101014.htm
    [2]
    陈达. 核能与核安全: 日本福岛核事故分析与思考[J]. 南京航空航天大学学报, 2012, 44(5): 597-602. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201205004.htm

    CHEN Da. Nuclear energy and nuclear safety: analysis and reflection about Fukushima nuclear accident[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(5): 597-602. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201205004.htm
    [3]
    景立平, 吴凡, 李嘉瑞, 等. 土-桩基-隔震支座-核岛地震反应试验研究[J]. 岩土力学, 2022, 43(9): 2483-2492. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202209014.htm

    JING Liping, WU Fan, LI Jiarui, et al. Experimental study on seismic response of soil-pile foundation-isolation supportnuclear island[J]. Rock and Soil Mechanics, 2022, 43(9): 2483-2492. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202209014.htm
    [4]
    刘晶波, 王菲, 孙运轮. 大飞机撞击钢筋混凝土核安全壳模型试验研究[J]. 建筑结构学报, 2022, 43(8): 185-195. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202208018.htm

    LIU Jingbo, WANG Fei, SUN Yunlun. Experimental study on a large aircraft impacting reinforced concrete nuclear containment structure model[J]. Journal of Building Structures, 2022, 43(8): 185-195. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202208018.htm
    [5]
    ALLOTEY N, EI NAGGAR M H. A numerical study into lateral cyclic nonlinear soil-pile response[J]. Canadian Geotechnical Journal, 2008, 45(9): 1268-1281. doi: 10.1139/T08-050
    [6]
    ASHOUR M, HELAL A. Contribution of vertical skin friction to the lateral resistance of large-diameter shafts[J]. Journal of Bridge Engineering, 2014, 19(2): 289-302. doi: 10.1061/(ASCE)BE.1943-5592.0000505
    [7]
    ABBASI H, BINESH S, LASHKARI A. Using a state-dependent constitutive model in strain wedge method for laterally loaded piles in sand[J]. Soils and Foundations, 2019, 59(2): 271-283. doi: 10.1016/j.sandf.2018.10.007
    [8]
    ASHOUR M, NORRIS G. Modeling lateral soil-pile response based on soil-pile interaction[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(5): 420-428. doi: 10.1061/(ASCE)1090-0241(2000)126:5(420)
    [9]
    ASHOUR M, PILLING P, NORRIS G. Lateral behavior of pile groups in layered soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(6): 580-592. doi: 10.1061/(ASCE)1090-0241(2004)130:6(580)
    [10]
    BROWN DAN A, CHINE-FENG S. Some numerical experiments with a three dimensional finite element model of a laterally loaded pile[J]. Computers and Geotechnics, 1991, 12(2): 149-162. doi: 10.1016/0266-352X(91)90004-Y
    [11]
    YANG K, LIANG R. Numerical solution for laterally loaded piles in a two-layer soil profile[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11): 1436-43. doi: 10.1061/(ASCE)1090-0241(2006)132:11(1436)
    [12]
    汪刚, 景立平, 李嘉瑞, 等. 桩-土-上部结构动力相互作用振动台试验研究[J]. 岩石力学与工程学报, 2021, 40(增刊2): 3414-3424. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2040.htm

    WANG Gang, JING Liping, LI Jiarui, et al. Shaking table test study on seismic-soil-pilesuperstructure-interaction[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3414-3424. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2040.htm
    [13]
    LEMNITZER A, KHALILI-TEHRANI P, AHLBERG E R, et al. Nonlinear efficiency of bored pile group under lateral loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1673-1685.
    [14]
    ZHOU M, YUAN W, ZHANG Y. Seismic material properties of reinforced concrete and steel casing composite concrete in elevated pile-group foundation[J]. Polish Maritime Research, 2015, 22(S1): 141-8.
    [15]
    WANG X, YE A, HE Z, et al. Quasi-static cyclic testing of elevated RC pile-cap foundation for bridge structures[J]. Journal of Bridge Engineering, 2016, 21(2): 04015042.
    [16]
    GUAN Z, CHEN X, LI J. Experimental investigation of the seismic performance of bridge models with conventional and rocking pile group foundations[J]. Engineering Structures, 2018, 168: 889-902.
    [17]
    张永亮, 宁贵霞, 陈兴冲, 等. 桥梁群桩基础非线性受力特征及影响参数分析[J]. 公路交通科技, 2018, 35(7): 42-49. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201807007.htm

    ZHANG Yongliang, NING Guixia, CHEN Xingchong, et al. Analysis on nonlinear loading characteristics and influence parameters of group pile foundation of bridge[J]. Journal of Highway and Transportation Research and Development, 2018, 35(7): 42-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201807007.htm
    [18]
    LIU T, WANG X, YE A. Roles of pile-group and cap-rotation effects on seismic failure mechanisms of partially-embedded bridge foundations: Quasi-static tests[J]. Soil Dynamics and Earthquake Engineering, 2020, 132: 106074.
    [19]
    景立平, 汪刚, 李嘉瑞, 等. 土-桩基-核岛体系动力相互作用振动台试验及数值模拟[J]. 岩土工程学报, 2022, 44(1): 163-172, I0009, I0010. doi: 10.11779/CJGE202201016

    JING Liping, WANG Gang, LI Jiarui, et al. Shaking table tests and numerical simulations of dynamic interaction of soil-pile-nuclear island system[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 163-172, I0009, I0010. (in Chinese) doi: 10.11779/CJGE202201016
    [20]
    WANG X, YE A, SHANG Y, et al. Shake-table investigation of scoured RC pile-group-supported bridges in liquefiable and nonliquefiable soils[J]. Earthquake Engineering & Structural Dynamics, 2019, 48(11): 1217-37.
    [21]
    SERRAS DIONISIOS N, PANAGAKI STAMATIA D, SKALOMENOS KONSTANTINOS A, et al. Inelastic lateral and seismic behaviour of concrete-filled steel tubular pile foundations[J]. Soil Dynamics and Earthquake Engineering, 2021, 143: 106657.
    [22]
    ELNASHAI A S, DI SARNO L. Fundamentals of Earthquake Engineering[M]. Chichester, West Sussex, UK: Wiley, 2008.
    [23]
    崔春义, 辛宇, 许成顺, 等. Pasternak层状地基中群桩水平动力响应解析解答[J]. 岩土工程学报, 2023, 45(5): 893-902. doi: 10.11779/CJGE20220235

    CUI Chunyi, XIN Yu, XU Chengshun, et al. Analytical solutions for horizontal dynamic response for pile groups based on Pasternak model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 893-902. (in Chinese) doi: 10.11779/CJGE20220235
    [24]
    SUN S, MA D, ZHOU G. Applications and analysis of the composite wall on construction in heilongjiang province[J]. Procedia Engineering, 2015, 118: 160-8.
    [25]
    ZHANG Y, CHEN X, ZHANG X, et al. Nonlinear response of the pile group foundation for lateral loads using pushover analysis[J]. Earthquakes and Structures, 2020, 19(4): 273-86.
  • Related Articles

    [1]Multi-index and thresholds for seismic performance evaluation of prefabricated subway station structure[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240829
    [2]DAI Xuan, MA Yunxiang, WEI Shaowei, WEI Peiyong, HUO Haifeng, CAI Degou, LI Zhao. Seismic performance analysis of frame beams-reinforced slope under different earthquake intensities[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 147-152. DOI: 10.11779/CJGE2023S20019
    [3]LUO Min-min, XU Chao, CHEN Yun, YANG Yang, LIANG Cheng. Influence factors for seismic performance of bridge abutment with geosythetic-reinforced soil (GRS)[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 215-219. DOI: 10.11779/CJGE2022S2047
    [4]ZHANG Xi-yin, WANG Wan-ping, YU Sheng-sheng, GUAN Jia-da, QIN Xun-cai. Seismic performance and influencing factors of pile foundation of bridges in permafrost regions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1635-1643. DOI: 10.11779/CJGE202209008
    [5]LI Sheng, ZHUANG Hai-yang, WANG Wei, DONG Zheng-fang. Seismic performance of single-story subway station structures with different types of intermediate columns[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1905-1914. DOI: 10.11779/CJGE202110017
    [6]YANG Jing, YUN Long, ZHUANG Hai-yang, REN Jia-wei, CHEN Wen-bin. Seismic performance levels of frame-type subway underground station with three layers and three spans[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2240-2248. DOI: 10.11779/CJGE202012010
    [7]ZHONG Zi-lan, ZHEN Li-bin, SHEN Yi-yao, ZHAO Mi, DU Xiu-li. Seismic performance evaluation of underground structures using endurance time analysis[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1482-1490. DOI: 10.11779/CJGE202008013
    [8]LU De-chun, LI Qiang, DU Xiu-li, WU Chun-yu. Seismic performance of subway station based on failure model control[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1400-1407. DOI: 10.11779/CJGE201908003
    [9]KONG Xian-jing, PANG Rui, ZOU De-gao, XU Bin, ZHOU Yang. Seismic performance evaluation of high CFRDs based on incremental dynamic analysis[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 978-984. DOI: 10.11779/CJGE201806002
    [10]ZHENG Gang, ZHANG Nan, BA Zhen-ning, ZHANG Tian-qi. Seismic performance of PHC pipe piles in layered soft soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 506-510.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (313) PDF downloads (81) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return