• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Xi-yin, WANG Wan-ping, YU Sheng-sheng, GUAN Jia-da, QIN Xun-cai. Seismic performance and influencing factors of pile foundation of bridges in permafrost regions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1635-1643. DOI: 10.11779/CJGE202209008
Citation: ZHANG Xi-yin, WANG Wan-ping, YU Sheng-sheng, GUAN Jia-da, QIN Xun-cai. Seismic performance and influencing factors of pile foundation of bridges in permafrost regions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1635-1643. DOI: 10.11779/CJGE202209008

Seismic performance and influencing factors of pile foundation of bridges in permafrost regions

More Information
  • Received Date: September 29, 2021
  • Available Online: September 22, 2022
  • In order to study the seismic performance and influencing factors of the pile foundation of bridges in permafrost regions, the pile foundation of bridges with elevated caps widely used in the permafrost regions of China is taken as the research object. The seismic failure characteristics of the pile foundation of bridges in the permafrost regions, and the influences of the physical and mechanical properties of frozen soil on its seismic performance are discussed by using the quasi-static tests and combining with the finite element method. It is found that the lateral bearing capacity and the initial stiffness of the pile-frozen soil system increase with the decreasing temperature of the frozen soil. The displacement of piles changes significantly before and after soil freezing. The change of the initial moisture content of soil has small influences on the lateral bearing capacity of the pile–frozen soil system and the displacement of piles. Take the optimal moisture content of soil as a boundary, the stiffness changes of the pile-frozen soil system are quite different under both sides of the boundary moisture content. The change of soil compaction degree has small influences on the change of the lateral bearing capacity of the pile–frozen system and the displacement of piles. The initial stiffness of the pile-frozen soil system increases with the increase of compaction degree of soil. Therefore, the physical and mechanical properties of the surrounding frozen soil of piles should be fully considered in the seismic performance evaluation of bridges with pile foundation in frozen soil regions.
  • [1]
    周幼吾. 中国冻土[M]. 北京: 科学出版社, 2000.

    ZHOU You-wu. Geocryology in China[M]. Beijing: Science Press, 2000. (in Chinese)
    [2]
    王万平, 张熙胤, 陈兴冲, 等. 考虑冻土效应的桥梁桩–土动力相互作用研究现状与展望[J]. 冰川冻土, 2020, 42(4): 1213–1219. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202004012.htm

    WANG Wan-ping, ZHANG Xi-yin, CHEN Xing-chong, et al. Study on dynamic interaction between bridge pile and soil with permafrost effect: status and review[J]. Journal of Glaciology and Geocryology, 2020, 42(4): 1213–1219. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202004012.htm
    [3]
    张熙胤, 陈兴冲, 高建强. 多年冻土区桥梁抗震研究进展[J]. 兰州理工大学学报, 2020, 46(2): 116–120. doi: 10.3969/j.issn.1673-5196.2020.02.020

    ZHANG Xi-yin, CHEN Xing-chong, GAO Jian-qiang. Research advance on seismic performance of bridges in permafrost regions[J]. Journal of Lanzhou University of Technology, 2020, 46(2): 116–120. (in Chinese) doi: 10.3969/j.issn.1673-5196.2020.02.020
    [4]
    景立平, 汪刚, 李嘉瑞, 等. 土–桩基–核岛体系动力相互作用振动台试验及数值模拟[J]. 岩土工程学报, 2022, 44(1): 163–172, 207. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202201016.htm

    JING Li-ping, WANG Gang, LI Jia-rui, et al. Shaking table tests and numerical simulations of dynamic interaction of soil-pile-nuclear island system[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 163–172, 207. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202201016.htm
    [5]
    任天翔, 程惠红, 张贝, 等. 2001年昆仑山口西MS8.1地震对周围断层的应力影响数值分析[J]. 地球物理学报, 2018, 61(12): 4838–4850. doi: 10.6038/cjg2018L0351

    REN Tian-xiang, CHENG Hui-hong, ZHANG Bei, et al. Numerical study on the co-seismic stress changes of surrounding faults due to the MS8.1 earthquake, 2001, Kokoxili earthquake[J]. Chinese Journal of Geophysics, 2018, 61(12): 4838–4850. (in Chinese) doi: 10.6038/cjg2018L0351
    [6]
    蒋瑶, 吴中海, 李家存, 等. 2010年玉树7.1级地震诱发滑坡特征及其地震地质意义[J]. 地质学报, 2014, 88(6): 1157–1176. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201406016.htm

    JIANG Yao, WU Zhong-hai, LI Jia-cun, et al. The characteristics of landslides triggered by the Yushu ms 7.1 earthquake and its seismogeology implication[J]. Acta Geologica Sinica, 2014, 88(6): 1157–1176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201406016.htm
    [7]
    管仲国, 黄勇, 张昊宇, 等. 青海玛多7.4级地震桥梁工程震害特性分析[J]. 世界地震工程, 2021, 37(3): 8–45. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC202103005.htm

    GUAN Zhong-guo, HUANG Yong, ZHANG Hao-yu, et al. Damage characteristics and analysis of bridge engineering in M7.4 Qinghai Maduo earthquake[J]. World Earthquake Engineering, 2021, 37(3): 8–45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC202103005.htm
    [8]
    于生生, 张熙胤, 陈兴冲, 等. 场地地震反应分析研究现状及展望[J]. 防灾减灾工程学报, 2021, 41(1): 181–192. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202101022.htm

    YU Sheng-sheng, ZHANG Xi-yin, CHEN Xing-chong, et al. Present research situation and prospect on analysis of site seismic response[J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(1): 181–192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202101022.htm
    [9]
    邢爽, 吴桐, 李曰兵, 等. 冻土-结构相互作用体系振动台试验及数值分析[J]. 岩土工程学报, 2021(11): 2003–2012, I0008. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202111008.htm

    XING Shuang, WU Tong, LI Yue-bing, et al. Shaking table tests and numerical analysis of frozen soil-structure interaction system[J]. Chinese Journal of Geotechnical Engineering, 2021(11): 2003–2012, I0008. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202111008.htm
    [10]
    燕斌, 王志强, 王君杰. 桩土相互作用研究领域的Winkler地基梁模型综述[J]. 建筑结构, 2011, 41(S1): 1363–1368. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG2011S1327.htm

    YAN Bin, WANG Zhi-qiang, WANG Jun-jie. Review of winkler foundation beam model on pile-soil interaction research area[J]. Building Structure, 2011, 41(S1): 1363–1368. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG2011S1327.htm
    [11]
    王常峰, 陈兴冲, 丁明波. 季节性冻土区桩基础桥梁地震反应研究[J]. 桥梁建设, 2016, 46(2): 48–53. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201602009.htm

    WANG Chang-feng, CHEN Xing-chong, DING Ming-bo. Study of seismic responses of bridge with pile foundations in seasonal frozen soil area[J]. Bridge Construction, 2016, 46(2): 48–53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201602009.htm
    [12]
    吴志坚, 王平, 霍元坤, 等. 多年冻土区桥梁桩基础地震响应的模型振动试验研究[J]. 西北地震学报, 2009, 31(4): 319–326. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200904003.htm

    WU Zhi-jian, WANG Ping, HUO Yuan-kun, et al. Study on shaking table test for seismic response of pile foundation of bridges at the permafrost regions[J]. Northwestern Seismological Journal, 2009, 31(4): 319–326. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200904003.htm
    [13]
    周云东, 刘云波, 杨德. 动载下冻土区温度变化对桩基受力影响数值分析[J]. 河北工程大学学报(自然科学版), 2016, 33(1): 11–15, 23. doi: 10.3969/j.issn.1673-9469.2016.01.003

    ZHOU Yun-dong, LIU Yun-bo, YANG De. Numerical simulation analysis of influence of temperature variations on the pile force in permafrost zone under dynamic loads[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2016, 33(1): 11–15, 23. (in Chinese) doi: 10.3969/j.issn.1673-9469.2016.01.003
    [14]
    WOTHERSPOON L M, SRITHARAN S, PENDER M J. Modelling the response of cyclically loaded bridge columns embedded in warm and seasonally frozen soils[J]. Engineering Structures, 2010, 32(4): 933–943. doi: 10.1016/j.engstruct.2009.12.019
    [15]
    FEI W P, YANG Z J, SUN T C. Ground freezing impact on laterally loaded pile foundations considering strain rate effect[J]. Cold Regions Science and Technology, 2019, 157: 53–63. doi: 10.1016/j.coldregions.2018.09.006
    [16]
    PLOTNIKOVA A, WOTHERSPOON L, BESKHYROUN S, et al. Influence of seasonal freezing on dynamic bridge characteristics using in situ monitoring data[J]. Cold Regions Science and Technology, 2019, 160: 184–193. doi: 10.1016/j.coldregions.2019.02.006
    [17]
    ZHANG X Y, YANG Z H, CHEN X C, et al. Experimental study of frozen soil effect on seismic behavior of bridge pile foundations in cold regions[J]. Structures, 2021, 32: 1752–1762. doi: 10.1016/j.istruc.2021.03.119
    [18]
    朱兴一, 鲁乘鸿, 戴子薇, 等. 土木工程材料自愈合行为的若干力学问题与研究进展[J]. 科学通报, 2021, 66(22): 2802–2819. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202122004.htm

    ZHU Xing-yi, LU Cheng-hong, DAI Zi-wei, et al. Application of self-healing engineering materials: mechanical problems and research progress[J]. Chinese Science Bulletin, 2021, 66(22): 2802–2819. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202122004.htm
    [19]
    李冀龙, 欧进萍. X形和三角形钢板阻尼器的阻尼力模型(Ⅰ): 基于双线性本构关系[J]. 世界地震工程, 2004, 20(1): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC200401002.htm

    LI Ji-long, OU Jin-ping. Damping force hysteresis loop models for X type and triangle mild steel dampers(Ⅰ)—Based on double linear constitutive model[J]. World Information on Earthquake Engineering, 2004, 20(1): 10–16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC200401002.htm
    [20]
    杨涛, 滕世权, 李国维, 等. 动载下桩承式路堤中平面土拱形态演化的数值模拟[J]. 公路交通科技, 2020, 37(5): 25–32. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202005004.htm

    YANG Tao, TENG Shi-quan, LI Guo-wei, et al. Numerical simulation of evolution of 2D soil arch shape in pile supported embankment under dynamic load[J]. Journal of Highway and Transportation Research and Development, 2020, 37(5): 25–32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202005004.htm
    [21]
    谷音, 彭晨星. PVA-ECC加固桥墩抗震性能试验研究[J]. 振动与冲击, 2021, 40(14): 92–99. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202114013.htm

    GU Yin, PENG Chen-xing. Experimental study on the seismic behavior of bridge piers strengthened with PVA-ECC[J]. Journal of Vibration and Shock, 2021, 40(14): 92–99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202114013.htm
    [22]
    鲁锦华, 陈兴冲, 丁明波, 等. 不同配筋率下铁路重力式桥墩抗震性能试验研究[J]. 中国铁道科学, 2021, 42(3): 47–54. doi: 10.3969/j.issn.1001-4632.2021.03.06

    LU Jin-hua, CHEN Xing-chong, DING Ming-bo, et al. Experimental study on seismic performance of railway gravity bridge piers with different reinforcement ratios[J]. China Railway Science, 2021, 42(3): 47–54. (in Chinese) doi: 10.3969/j.issn.1001-4632.2021.03.06
    [23]
    吴轶, 杨春, 陈力邦, 等. 梁柱–支撑式胶合木框架的抗震性能试验研究[J]. 土木工程学报, 2021, 54(8): 43–55.

    WU Yi, YANG Chun, CHEN Li-bang, et al. Experimental study on seismic performance of glued laminated timber K-braces frame structures[J]. China Civil Engineering Journal, 2021, 54(8): 43–55. (in Chinese)
  • Related Articles

    [1]TIAN Ya-hu, LIU Jian-kun, SHEN Yu-peng. 3-D finite element analysis of cooling effect of Qinghai-Tibet Railway embankment with thermosyphons in permafrost regions[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 113-119.
    [2]SU Kai, ZHANG Jiang-ming, FENG Wen-jie, QU Guang-zhou, ZHANG Hu. Model tests on initial freezing process of column foundation on slope in permafrost regions[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 794-799.
    [3]LIU Chao, CHE Ai-lan, WU Zhi-jian, CHEN Tuo. Stability of embankments in permafrost regions considering temperature field coupled with dynamic field[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 459-464.
    [4]Main factors influencing artificial upper table for embankment of Qinghai-Tibet railway in permafrost region[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8).
    [5]MA Lifeng, LIU Jiankun, LI Qingwu. Measures for roadbed problems of railways in permafrost regions of Northeast China[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 475-479.
    [6]SUN Binxiang, XU Xuezu, LAI Yuanming, WANG Shuangjie, ZHANG Jinzhao. Fractured-rock layer thickness of highway embankment in permafrost regions[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 451-459.
    [7]YU Wenbing, LAI Yuanming, ZHANG Xuefu, ZHANG Mingyi. Experimental study on ripped-rock revetment embankment in permafrost regions[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1233-1236.
    [8]YAN Songhong, CHEN Xinchong, GAO Feng. Study on stochastic earthquake characteristics of ground in permafrost regions[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(9): 1012-1015.
    [9]NIU Fujun, CHENG Guodong, LAI Yuanming, JIN Dewu. Instability study on thaw slumping in permafrost regions of Qinghai-Tibet Plateau[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(3): 402-406.
    [10]YU Wenbing, LAI Yuanming, ZHANG Xuefu, XIAO Jianzhang. Laboratory experiment study on the ballast and ventilated railway embankment in permafrost regions[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(4): 436-440.
  • Cited by

    Periodical cited type(7)

    1. 李明宇,刘明帝,甑尚维,万志辉,郭严伟,张宝盆. 预应力高强混凝土管桩抗弯静载试验有限元分析. 市政技术. 2025(03): 183-191 .
    2. 赵晓燕,皮赛娟. Q420qD钢板在桥梁主体结构中的应用及工艺优化. 粘接. 2025(03): 169-172 .
    3. 齐煜,张熙胤,王万平,黄安琪,张文静. 冻土区桥梁桩基础抗震试验研究现状及展望. 地震研究. 2024(01): 51-61 .
    4. 陈彬,雷林. 基于Midas对桥梁桩基础竖向荷载-位移影响规律研究. 江西建材. 2024(09): 78-80 .
    5. 张益舶,张熙胤,刘有乾,于生生,马华军,王万平,管嘉达. 多年冻土退化对青藏铁路桥梁桩基础地震易损性的影响. 冰川冻土. 2023(03): 953-965 .
    6. 吴慧山. 基于桩土相互作用的桥梁桩基础竖向荷载作用数值分析. 交通世界. 2023(34): 142-144 .
    7. 王强. 冻土区电气化铁路接触网基础接地研究. 铁道工程学报. 2023(12): 72-77 .

    Other cited types(4)

Catalog

    Article views (208) PDF downloads (63) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return