• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Xiaodi, WANG Jinchang, YANG Zhongxuan, GONG Xiaonan, XU Rongqiao. Analytical solutions for laterally loaded step-tapered piles by state space method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1944-1624. DOI: 10.11779/CJGE20220384
Citation: ZHANG Xiaodi, WANG Jinchang, YANG Zhongxuan, GONG Xiaonan, XU Rongqiao. Analytical solutions for laterally loaded step-tapered piles by state space method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1944-1624. DOI: 10.11779/CJGE20220384

Analytical solutions for laterally loaded step-tapered piles by state space method

More Information
  • Received Date: April 01, 1952
  • Available Online: September 06, 2023
  • To analyze the response of laterally loaded step-tapered piles, a four-spring model is proposed based on the Timoshenko beam theory considering the effects of pile diameter, shear deformation and nonlinear pile material behavior. The analytical solutions for the internal forces and deformations with arbitrary slenderness ratio can be derived by the state space method considering the nonlinear pile–soil interaction. The solutions are validated through the available field test results in the literatures. Furthermore, the influences of pile parameters, such as the variation position of the diameter, diameter ratio and Young's modulus ratio, on the pile loading responses are proposed. The results show that: (1) The sensitivity of these parameters follows the descending order: pile diameter ratio > variation position of pile diameter > Young's modulus ratio. (2) After trade-off between the pile lateral bearing capacity and the cost, it is suggested that the optimal variation position of the diameter, the pile diameter ratio and Young's modulus ratio should be set as 0.6.
  • [1]
    ISMAEL N F. Behavior of step tapered bored piles in sand under static lateral loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(5): 669-676. doi: 10.1061/(ASCE)GT.1943-5606.0000265
    [2]
    常林越, 王金昌, 朱向荣, 等. 双层弹塑性地基水平受荷桩解析计算[J]. 岩土工程学报, 2011, 33(3): 433-440. http://www.cgejournal.com/cn/article/id/13959

    CHANG Linyue, WANG Jinchang, ZHU Xiangrong, et al. Analytical calculation of laterally loaded piles in double-layered elastoplastic soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 433-440. (in Chinese) http://www.cgejournal.com/cn/article/id/13959
    [3]
    ZHU M X, ZHANG Y B, GONG W M, et al. Generalized solutions for axially and laterally loaded piles in multilayered soil deposits with transfer matrix method[J]. International Journal of Geomechanics, 2017, 17(4): 4016104-4016122. doi: 10.1061/(ASCE)GM.1943-5622.0000800
    [4]
    胡文韬, 刘豆, 耿大新, 等. 水平受荷阶梯形变截面桩的内力及变形分析[J]. 浙江大学学报(工学版), 2020, 54(4): 739-747. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202004014.htm

    HU Wentao, LIU Dou, GENG Daxin, et al. Internal force and deformation of step-tapered pile under lateral loads[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(4): 739-747. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202004014.htm
    [5]
    李丹, 简迪, 吴卓尔, 等. 三级阶梯型变截面嵌岩桩的承载特性研究[J]. 岩土力学, 2020(增刊2): 1-8.

    LI Dan, JIAN Di, WU Zhuoer, et al. Research on bearing characteristics of three-stage stepped rock-socketed piles[J]. Rock and Soil Mechanics, 2020(S2): 1-8. (in Chinese)
    [6]
    HAN J, FROST J D. Load-Deflection response of transversely isotropic piles under lateral loads[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(5): 509-529. doi: 10.1002/(SICI)1096-9853(20000425)24:5<509::AID-NAG79>3.0.CO;2-9
    [7]
    竺明星, 龚维明, 卢红前, 等. 考虑侧阻与端阻影响的基桩水平承载力传递矩阵解[J]. 工程力学, 2018, 35(增刊1): 230-238. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2018S1040.htm

    ZHU Mingxing, GONG Weiming, LU Hongqian, et al. Transfer matrix solutions for lateral behavior of pile foundation considering the skin and end resistance effect[J]. Engineering Mechanics, 2018, 35(S1): 230-238. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2018S1040.htm
    [8]
    竺明星, 戴国亮, 龚维明, 等. 水平荷载下桩身侧阻抗力矩的作用机制与计算模型研究[J]. 岩土力学, 2019, 40(7): 2593-2607, 2662. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907013.htm

    ZHU Mingxing, DAI Guoliang, GONG Weiming, et al. Mechanism and calculation models of resisting moment caused by shaft resistance for laterally loaded pile[J]. Rock and Soil Mechanics, 2019, 40(7): 2593-2607, 2662. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907013.htm
    [9]
    BYRNE B W, HOULSBY G T, BURD H J, et al. PISA design model for monopiles for offshore wind turbines: application to a stiff glacial clay till[J]. Géotechnique, 2020, 70(11): 1030-1047.
    [10]
    LIANG F Y, LI Y C, LI L, et al. Analytical solution for laterally loaded long piles based on fourier–laplace integral[J]. Applied Mathematical Modelling, 2014, 38(21/22): 5198-5216.
    [11]
    WANG J C, HUANG W M, XU R Q, et al. Analytical solution for segmental tunnel lining incorporating interaction between adjacent rings[J]. Journal of Engineering Mechanics, 2020, 146(7): 04020075-04020091.
    [12]
    ZHANG X D, WANG J C, CHEN Q J, et al. Analytical method for segmental tunnel linings reinforced by secondary lining considering interfacial slippage and detachment[J]. International Journal of Geomechanics, 2021, 21(6): 4021084.
    [13]
    REESE L, VAN I W, HOLTZ R. Single piles and pile groups under lateral loading[J]. Applied Mechanics Reviews, 2002, 55(1): B9-B10.
    [14]
    API (American Petroleum Institute). Recommended Practice Planning, Designing, and Constructing Fixed Offshore Platforms-Working Stress Design[S]. Washington D C: API Recommended Practice 2A-WSD, 2014.
    [15]
    俞剑, 黄茂松, 李森, 等. 黏土中海上风电水平受荷大直径单桩设计方法的思考[J]. 海洋开发与管理, 2018, 35(增刊1): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGL2018S1007.htm

    YU Jian, HUANG Maosong, LI Sen, et al. Thinking on design method of laterally loaded large diameter monopile for offshore wind turbines in clay[J]. Ocean Development and Management, 2018, 35(S1): 34-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKGL2018S1007.htm
    [16]
    ZHANG Y H, ANDERSEN K H. Soil reaction curves for monopiles in clay[J]. Marine Structures, 2019, 65: 94-113.
    [17]
    MAHESHWARI B K, and WATANABE H. Nonlinear dynamic behavior of pile foundations: effects of separation at the soil-pile interface[J]. Soils and Foundations, 2006, 46(4): 437-448.
    [18]
    ASHOUR M, HELAL A. Contribution of vertical skin friction to the lateral resistance of large-diameter shafts[J]. Journal of Bridge Engineering, 2014, 19(2): 289-302.
    [19]
    RONDOLPH M F, WROTH C P. Analysis of deformation of vertically loaded piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1978, 104(12): 1465-1488.
    [20]
    WANG L Z, LAI Y Q, HONG Y, et al. A unified lateral soil reaction model for monopiles in soft clay considering various length-to-diameter (L/D) ratios[J]. Ocean Engineering, 2020, 212: 107492-107506.
    [21]
    王伯惠, 上官兴. 中国钻孔灌注桩新发展[M]. 北京: 人民交通出版社, 1999: 89-90.

    WANG Bohui, SHANGGUAN Xing. New Development of Bored pile in China[M]. Beijing: China Communications Press, 1999: 89-90. (in Chinese)
    [22]
    公路桥涵地基与基础设计规范: JTG 3363—2019[S]. 北京: 人民交通出版社, 2019.

    Specifications for Design of Foundation of Highway Bridges and Culverts: JTG 3363—2019[S]. Beijing: China Communications Press, 2019. (in Chinese)
    [23]
    GEROLYMOS N, GAZETAS G. Static and dynamic response of massive caisson foundations with soil and interface nonlinearities—validation and results[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(5): 377-394.
    [24]
    KO J, JEONG S. Plugging effect of open-ended piles in sandy soil[J]. Canadian Geotechnical Journal, 2015, 52(5): 535-547.
    [25]
    REESE L C, WANG S T. Analysis of piles under lateral loading with nonlinear flexural rigidity[C]// Proceedings of International Conference on Design and Construction of Deep Foundation, Orlando, 1994.
    [26]
    COWPER G R. The shear coefficient in Timoshenko's beam theory[J]. Journal of Applied Mechanics, 1966, 33(2): 335-340.
    [27]
    WANG L Z, HE B, HONG Y, et al. Field tests of the lateral monotonic and cyclic performance of jet grouting Reinforced cast-in-place piles[J]. Journal of Geotechnica and Geoenvironmental Engineering, 2015, 141(5): 06015001.
  • Related Articles

    [1]Analytical solution for longitudinal deformation of shield tunnel considering nonlinear rotational effects of circumferential joints[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240313
    [2]ZHANG Zhiguo, CHEN Jie, ZHU Zhengguo, WEI Gang, WU Zhongteng, LU Zheng. Longitudinal deformations of existing discontinuous tunnels induced by shield tunneling based on Kerr foundation model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2238-2247. DOI: 10.11779/CJGE20221012
    [3]ZHANG Ling, YUE Shao, ZHAO Ming-hua, PENG Wen-zhe. Behaviors of pile-column piers based on modified pasternak foundation model[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1817-1826. DOI: 10.11779/CJGE202210007
    [4]LIANG Jing-yu, DU Xiu-li, LU De-chun, HAN Jia-yue. Fractional-order critical state model for soils in characteristic stress space[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 581-587. DOI: 10.11779/CJGE201903022
    [5]ZHU Ming-xing, GONG Wei-ming, HE Xiao-yuan. Transfer matrix solutions for responses of laterally loaded piles in multilayered soil deposits[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 46-50. DOI: 10.11779/CJGE2015S2010
    [6]MA Shao-kun, PAN Bai-yu, HE Jian-xing, ZHAO Nai-feng, JIANG Jie, LIU Ying. Super-subloading surface model with improved state variables in 3D stress space and its numerical implementation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2272-2279. DOI: 10.11779/CJGE201512017
    [7]PAN Hong, ZENG Lvxian. Researches on ring beam retaining structure of deep foundation pit by spacial analytical method[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 849-852.
    [8]JIANG Jianqun, ZHOU Huafei, ZHANG Tuqiao. Steady-state response of an elastic half-space under a moving point load[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 440-444.
    [9]SUN Jianqin, LIU Yong, LI Conglin. Super element method for analyzing interaction of space frame-grillage foundation beams on elastic foundation[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 225-227.
    [10]Zhang Huiming, Zeng Qiaoling. Steady state strength of sand:concepts and experiment[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 95-100.
  • Cited by

    Periodical cited type(2)

    1. 张建伟,杨森,瑜璐,赫山林,张龑. 阶梯型变截面桩水平承载机理研究. 河南理工大学学报(自然科学版). 2025(02): 176-185 .
    2. 李思维,靳莉,于龙,杜立石,岳靓,张喜润. 面向多元可控负荷调控的云边协同负荷资源分配策略. 电信科学. 2024(08): 52-62 .

    Other cited types(2)

Catalog

    Article views (328) PDF downloads (118) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return