• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YUAN Jin-yuan, LI Tian-ning, WANG Lan-min, WANG Yun-long, CHEN Long-wei, LI Zhao-yan, YUAN Xiao-ming, WANG Yong-zhi, CHEN Zhuo-shi, LI Rui-shan. New method for calculating probability of sand liquefaction[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 541-549. DOI: 10.11779/CJGE202203016
Citation: YUAN Jin-yuan, LI Tian-ning, WANG Lan-min, WANG Yun-long, CHEN Long-wei, LI Zhao-yan, YUAN Xiao-ming, WANG Yong-zhi, CHEN Zhuo-shi, LI Rui-shan. New method for calculating probability of sand liquefaction[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 541-549. DOI: 10.11779/CJGE202203016

New method for calculating probability of sand liquefaction

More Information
  • Received Date: June 09, 2021
  • Available Online: September 22, 2022
  • Based on the demand of developing liquefaction prevention and control technology under the concept of risk, a new univariate-based (UB) probability method is deduced, and a new formula is proposed, which takes the in-situ standard penetration blow count as the main control parameter, and the verification of the new method is conducted by using the recent actually measured data. The results shows that through the combination of the mature deterministic method of liquefaction discrimination with the classical mathematical method for the probability can solve the deviation problem of the evaluation method which is completely dependent on sample regression or learning caused by the incompleteness of the current measured data, and can also overcome the unreasonable disadvantages of the existing evaluation methods for liquefaction probability caused by the CSR theory when the buried depth of sand layer exceeds 10 m. The reliability and advancement of the new method and formula are verified by 341 groups of measured liquefaction data with PGA range of 0.23g to 0.89g and buried depth of 2 to 30 m from the 2011 New Zealand Earthquake. The proposed formula has been adopted in the revised version of the General Rule for Performance-Based Seismic Design of Buildings of China, which can provide guidance and technical support for the related specification revision and engineering application, and the proposed univariate-based approach for probability calculation can be used as a guide and reference for probability calculation of dichotomies with multiple independent variables.
  • [1]
    王兰民. 黄土地层大规模地震液化滑移的机理与风险评估[J]. 岩土工程学报, 2020, 42(1): 1–19. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18090.shtml

    WANG Lan-min. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 1–19. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18090.shtml
    [2]
    周燕国, 谭晓明, 陈捷, 等. 易液化深厚覆盖层地震动放大效应台阵观测与分析[J]. 岩土工程学报, 2017, 39(7): 1282–1291. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16961.shtml

    ZHOU Yan-guo, TAN Xiao-ming, CHEN Jie, et al. Observations and analyses of site amplification effects of deep liquefiable soil deposits by geotechnical downhole array[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1282–1291. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16961.shtml
    [3]
    杜修力, 张佩, 许成顺, 等. 论有效应力原理与有效应力[J]. 岩土工程学报, 2018, 40(3): 486–494. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17307.shtml

    DU Xiu-li, ZHANG Pei, XU Cheng-shun. On principle of effective stress and effective stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 486–494. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17307.shtml
    [4]
    陈育民, 刘汉龙, 邵国建, 等. 砂土液化及液化后流动特性试验研究[J]. 岩土工程学报, 2009, 31(9): 1408–1413. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract13377.shtml

    CHEN Yu-min, LIU Han-long, SHAO Guo-jian. Laboratory tests on flow characteristics of liquefied and post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1408–1413. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract13377.shtml
    [5]
    刘星, 王睿, 张建民. 液化地基中群桩基础地震响应分析[J]. 岩土工程学报, 2015, 37(12): 2331–2336. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16412.shtml

    LIU Xing, WANG Rui, ZHANG Jian-min. Seismic response analysis of pile groups in liquefiable foundations[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2331–2336. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16412.shtml
    [6]
    陈国兴, 孙田, 王炳辉, 等. 循环荷载作用下饱和砂砾土的破坏机理与动强度[J]. 岩土工程学报, 2015, 37(12): 2140–2148. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16389.shtml

    CHEN Guo-xing, SUN Tian, WANG Bing-hui, et al. Undrained cyclic failure mechanisms and resistance of saturated sand-gravel mixtures[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2140–2148. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16389.shtml
    [7]
    刘汉龙, 王维国, 刘军, 等. 饱和砂土场地大型爆炸液化现场试验研究[J]. 岩土工程学报, 2017, 39(4): 601–608. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16871.shtml

    LIU Han-long, WANG Wei-guo, LIU Jun, et al. Large-scale field tests on blast-induced liquefaction in saturated sand[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 601–608. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16871.shtml
    [8]
    建筑抗震设计规范: GB 50011—2010[S]. 2010.

    Code for Seismic Design of Buildings: GB 50011—2010[S]. 2010. (in Chinese)
    [9]
    LIAO S C, VENEZIANO D, WHITMAN R V. Regression models for evaluating liquefaction probability[J]. Journal of Geotechnical Engineering, ASCE, 1988, 114(4): 389–411. doi: 10.1061/(ASCE)0733-9410(1988)114:4(389)
    [10]
    JUANG C H, CHON C J, TAO J, et al. Risk-based liquefaction potential evaluation using standard penetration tests[J]. Gan Geoteeh J, 2000, 37: 1195–1208.
    [11]
    佘跃心, 刘汉龙, 高玉峰. 场地液化势评价概率模型[J]. 工程勘察, 2002(5): 4–7. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200205001.htm

    SHE Yue-xin, LIU Han-long, GAO Yu-feng. Probabilistic model for evaluation of site liquefaction potential[J]. Geotechnical Investigation and Surveying, 2002(5): 4–7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200205001.htm
    [12]
    符圣聪, 江静贝. 基于静力触探的液化势概率估计和判别标准[J]. 工程抗震与加固改造, 2005, 27(1): 70–74. doi: 10.3969/j.issn.1002-8412.2005.01.016

    FU Sheng-cong, JIANG Jing-bei. Probabilistic evaluation and criterion of liquefaction potential by CPT[J]. Earthquake Resistant Engineering and Retrofitting, 2005, 27(1): 70–74. (in Chinese) doi: 10.3969/j.issn.1002-8412.2005.01.016
    [13]
    陈国兴, 李方明. 基于径向基函数神经网络模型的砂土液化概率判别方法[J]. 岩土工程学报, 2006, 28(3): 301–305. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract11973.shtml

    CHEN Guo-xing, LI Fang-ming. Probabilistic estimation of sand liquefaction based on network model of radial basis function Chinese[J]. Journal of Geotechnical Engineering, 2006, 28(3): 301–305. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract11973.shtml
    [14]
    潘建平, 孔宪京, 邹德高. 基于Logistic回归模型的砂土液化概率评价[J]. 岩土力学, 2008, 29(9): 2267–2571 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200809051.htm

    PAN Jian-ping, KONG Xian-jing, ZOU De-gao. Probabilistic evaluation of sand liquefaction based on Logistic regression model[J]. Rock and Soil Mechanics, 2008, 29(9): 2267–2571. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200809051.htm
    [15]
    袁启旺. 基于CPT的地基液化概率评价[J]. 工程勘察, 2009(6): 24–29. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200906004.htm

    YUAN Qi-wang. Evaluating soil liquefaction probability using CPT data[J]. Geotechnical Investigation and Surveying, 2009(6): 24–29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200906004.htm
    [16]
    袁晓铭, 曹振中. 基于土层常规参数的液化发生概率计算公式及其可靠性研究[J]. 土木工程学报. 2014, 47(4): 99–108. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201404015.htm

    YUAN Xiao-ming, CAO Zhen-zhong. Conventional soils parameters-based liquefaction probabilistic evaluation procedure and its reliability analysis[J]. China Civil Engineering Journal, 2009, 47(4): 99–108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201404015.htm
    [17]
    核电厂抗震设计标准: GB 50267—2019[S]. 2019.

    Standard for Seismic Design of Nuclear Power Plants: GB 50267—2019[S]. 2019. (in Chinese)
    [18]
    袁晓铭, 费扬, 陈龙伟, 等. 含剧烈地震动作用不同埋深砂土液化判别统一公式[J]. 岩石力学与工程学报, 2021, 40(10): 2101–2112. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202110014.htm

    YUAN Xiao-ming, FEI Yang, CHEN Long-wei, et al. A unified formula for predicting sand liquefaction in different buried depths under severe seismic ground motion and below[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(10): 2101–2112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202110014.htm
    [19]
    YOUD T L, IDRISS I M. Proceeding of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils[R]. Technical Report NCEER-97-0022, 1997.
    [20]
    冯·贝塔朗菲, 林康义译. 一般系统论——基础、发展和应用[D]. 北京: 清华大学出版社, 1987.

    VON Bertalanfi, Translated by LIN K Y, General System Theory: Foundation, Development and Application[D]. Beijing: Tsinghua University Press, 1987. (in Chinese)
    [21]
    钱学森, 等. 论系统工程[D]. 长沙: 湖南科学技术出版社, 1982.

    QIAN Xue-sen, et al. On System Engineering[D]. Changsha: Hunan Science and Technology Press, 1982. (in Chinese)
    [22]
    COX D R. The Analysis of Binary Data[D]. London: Methuen and Co. Ltd., 1970.
    [23]
    陈同之. 2011年新西兰地震液化特征及现有液化判别方法检验[D]. 北京: 中国地震局工程力学研究所, 2014.

    CHEN Tong-zhi. 2011 New Zealand Earthquake Liquefaction Characteristics and Test of Existing Liquefaction Discriminant Methods[D]. Beijing: Institute of Engineering Mechanics, China Earthquake Administration, 2014. (in Chinese)
  • Cited by

    Periodical cited type(11)

    1. 吕庆强,蔡伟. 某库区移民场地条件变化后的砂土液化研究. 地质灾害与环境保护. 2024(01): 70-73 .
    2. 李雨润,范浩然,闫志晓,辛晓梅. 干砂与饱和砂土场地直斜群桩横向动力响应特性对比研究. 自然灾害学报. 2024(03): 202-216 .
    3. 杨洋,魏怡童. 基于分类树的液化概率等级评估新方法. 岩土力学. 2024(07): 2175-2186+2194 .
    4. 李萍萍,赵少飞,鲍俊文,刘子源. 基于标贯试验的含细粒砂土液化概率判别新模型. 防灾减灾工程学报. 2024(05): 1133-1139 .
    5. 袁近远,苏安双,陈龙伟,许成顺,王淼,袁晓铭,张思宇. 基于剪切波速的砾性土液化概率计算的中国方法. 岩土力学. 2024(11): 3378-3387+3415 .
    6. 袁近远,王兰民,汪云龙,袁晓铭. 不同设防水准下场地液化震害风险差异性研究. 岩石力学与工程学报. 2023(01): 246-260 .
    7. 王维铭,陈龙伟,郭婷婷,汪云龙,凌贤长. 基于中国砂土液化数据库的标准贯入试验液化判别方法研究. 岩土力学. 2023(01): 279-288 .
    8. 郝少雷,张兵,徐世光,李岳峰,陈梦瑞,邓立雄,郭薇. 基于SPT-APD-DDA的砂土液化评价方法研究. 地震工程学报. 2023(04): 877-886 .
    9. 李原,王睿,张建民. 地下水位上升对北京土层地震液化的影响. 土木工程学报. 2023(S2): 95-103 .
    10. 赵志江. 泵站基础液化判别方法分析. 水利技术监督. 2023(12): 217-221 .
    11. 邱香,袁晓铭,李鑫洋,汪云龙,李兆焱,张思宇. 不同地区数据下CPT液化判别公式的差异性与互用可行性研究. 土木工程学报. 2022(S1): 241-249 .

    Other cited types(6)

Catalog

    Article views (231) PDF downloads (146) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return