Citation: | YUAN Jin-yuan, LI Tian-ning, WANG Lan-min, WANG Yun-long, CHEN Long-wei, LI Zhao-yan, YUAN Xiao-ming, WANG Yong-zhi, CHEN Zhuo-shi, LI Rui-shan. New method for calculating probability of sand liquefaction[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 541-549. DOI: 10.11779/CJGE202203016 |
[1] |
王兰民. 黄土地层大规模地震液化滑移的机理与风险评估[J]. 岩土工程学报, 2020, 42(1): 1–19. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18090.shtml
WANG Lan-min. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 1–19. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18090.shtml
|
[2] |
周燕国, 谭晓明, 陈捷, 等. 易液化深厚覆盖层地震动放大效应台阵观测与分析[J]. 岩土工程学报, 2017, 39(7): 1282–1291. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16961.shtml
ZHOU Yan-guo, TAN Xiao-ming, CHEN Jie, et al. Observations and analyses of site amplification effects of deep liquefiable soil deposits by geotechnical downhole array[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1282–1291. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16961.shtml
|
[3] |
杜修力, 张佩, 许成顺, 等. 论有效应力原理与有效应力[J]. 岩土工程学报, 2018, 40(3): 486–494. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17307.shtml
DU Xiu-li, ZHANG Pei, XU Cheng-shun. On principle of effective stress and effective stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 486–494. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17307.shtml
|
[4] |
陈育民, 刘汉龙, 邵国建, 等. 砂土液化及液化后流动特性试验研究[J]. 岩土工程学报, 2009, 31(9): 1408–1413. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract13377.shtml
CHEN Yu-min, LIU Han-long, SHAO Guo-jian. Laboratory tests on flow characteristics of liquefied and post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1408–1413. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract13377.shtml
|
[5] |
刘星, 王睿, 张建民. 液化地基中群桩基础地震响应分析[J]. 岩土工程学报, 2015, 37(12): 2331–2336. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16412.shtml
LIU Xing, WANG Rui, ZHANG Jian-min. Seismic response analysis of pile groups in liquefiable foundations[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2331–2336. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16412.shtml
|
[6] |
陈国兴, 孙田, 王炳辉, 等. 循环荷载作用下饱和砂砾土的破坏机理与动强度[J]. 岩土工程学报, 2015, 37(12): 2140–2148. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16389.shtml
CHEN Guo-xing, SUN Tian, WANG Bing-hui, et al. Undrained cyclic failure mechanisms and resistance of saturated sand-gravel mixtures[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2140–2148. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16389.shtml
|
[7] |
刘汉龙, 王维国, 刘军, 等. 饱和砂土场地大型爆炸液化现场试验研究[J]. 岩土工程学报, 2017, 39(4): 601–608. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16871.shtml
LIU Han-long, WANG Wei-guo, LIU Jun, et al. Large-scale field tests on blast-induced liquefaction in saturated sand[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 601–608. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16871.shtml
|
[8] |
建筑抗震设计规范: GB 50011—2010[S]. 2010.
Code for Seismic Design of Buildings: GB 50011—2010[S]. 2010. (in Chinese)
|
[9] |
LIAO S C, VENEZIANO D, WHITMAN R V. Regression models for evaluating liquefaction probability[J]. Journal of Geotechnical Engineering, ASCE, 1988, 114(4): 389–411. doi: 10.1061/(ASCE)0733-9410(1988)114:4(389)
|
[10] |
JUANG C H, CHON C J, TAO J, et al. Risk-based liquefaction potential evaluation using standard penetration tests[J]. Gan Geoteeh J, 2000, 37: 1195–1208.
|
[11] |
佘跃心, 刘汉龙, 高玉峰. 场地液化势评价概率模型[J]. 工程勘察, 2002(5): 4–7. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200205001.htm
SHE Yue-xin, LIU Han-long, GAO Yu-feng. Probabilistic model for evaluation of site liquefaction potential[J]. Geotechnical Investigation and Surveying, 2002(5): 4–7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200205001.htm
|
[12] |
符圣聪, 江静贝. 基于静力触探的液化势概率估计和判别标准[J]. 工程抗震与加固改造, 2005, 27(1): 70–74. doi: 10.3969/j.issn.1002-8412.2005.01.016
FU Sheng-cong, JIANG Jing-bei. Probabilistic evaluation and criterion of liquefaction potential by CPT[J]. Earthquake Resistant Engineering and Retrofitting, 2005, 27(1): 70–74. (in Chinese) doi: 10.3969/j.issn.1002-8412.2005.01.016
|
[13] |
陈国兴, 李方明. 基于径向基函数神经网络模型的砂土液化概率判别方法[J]. 岩土工程学报, 2006, 28(3): 301–305. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract11973.shtml
CHEN Guo-xing, LI Fang-ming. Probabilistic estimation of sand liquefaction based on network model of radial basis function Chinese[J]. Journal of Geotechnical Engineering, 2006, 28(3): 301–305. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract11973.shtml
|
[14] |
潘建平, 孔宪京, 邹德高. 基于Logistic回归模型的砂土液化概率评价[J]. 岩土力学, 2008, 29(9): 2267–2571 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200809051.htm
PAN Jian-ping, KONG Xian-jing, ZOU De-gao. Probabilistic evaluation of sand liquefaction based on Logistic regression model[J]. Rock and Soil Mechanics, 2008, 29(9): 2267–2571. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200809051.htm
|
[15] |
袁启旺. 基于CPT的地基液化概率评价[J]. 工程勘察, 2009(6): 24–29. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200906004.htm
YUAN Qi-wang. Evaluating soil liquefaction probability using CPT data[J]. Geotechnical Investigation and Surveying, 2009(6): 24–29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200906004.htm
|
[16] |
袁晓铭, 曹振中. 基于土层常规参数的液化发生概率计算公式及其可靠性研究[J]. 土木工程学报. 2014, 47(4): 99–108. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201404015.htm
YUAN Xiao-ming, CAO Zhen-zhong. Conventional soils parameters-based liquefaction probabilistic evaluation procedure and its reliability analysis[J]. China Civil Engineering Journal, 2009, 47(4): 99–108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201404015.htm
|
[17] |
核电厂抗震设计标准: GB 50267—2019[S]. 2019.
Standard for Seismic Design of Nuclear Power Plants: GB 50267—2019[S]. 2019. (in Chinese)
|
[18] |
袁晓铭, 费扬, 陈龙伟, 等. 含剧烈地震动作用不同埋深砂土液化判别统一公式[J]. 岩石力学与工程学报, 2021, 40(10): 2101–2112. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202110014.htm
YUAN Xiao-ming, FEI Yang, CHEN Long-wei, et al. A unified formula for predicting sand liquefaction in different buried depths under severe seismic ground motion and below[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(10): 2101–2112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202110014.htm
|
[19] |
YOUD T L, IDRISS I M. Proceeding of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils[R]. Technical Report NCEER-97-0022, 1997.
|
[20] |
冯·贝塔朗菲, 林康义译. 一般系统论——基础、发展和应用[D]. 北京: 清华大学出版社, 1987.
VON Bertalanfi, Translated by LIN K Y, General System Theory: Foundation, Development and Application[D]. Beijing: Tsinghua University Press, 1987. (in Chinese)
|
[21] |
钱学森, 等. 论系统工程[D]. 长沙: 湖南科学技术出版社, 1982.
QIAN Xue-sen, et al. On System Engineering[D]. Changsha: Hunan Science and Technology Press, 1982. (in Chinese)
|
[22] |
COX D R. The Analysis of Binary Data[D]. London: Methuen and Co. Ltd., 1970.
|
[23] |
陈同之. 2011年新西兰地震液化特征及现有液化判别方法检验[D]. 北京: 中国地震局工程力学研究所, 2014.
CHEN Tong-zhi. 2011 New Zealand Earthquake Liquefaction Characteristics and Test of Existing Liquefaction Discriminant Methods[D]. Beijing: Institute of Engineering Mechanics, China Earthquake Administration, 2014. (in Chinese)
|
[1] | HAN Lei, YE Guan-lin, WANG Jian-hua, YANG Guang-hui, ZHOU Song. Finite element analysis of impact of under-crossing of large shallow shield tunnel on riverbank[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 125-128. DOI: 10.11779/CJGE2015S1025 |
[2] | HAN Jin-bao, XIONG Ju-hua, SUN Qing, YANG Min. Multi-factor three-dimensional finite element analysis of effects of tunnel construction on adjacent pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 339-344. |
[3] | XU Wen-qiang, YUAN Fan-fan, WEI Chang-fu, YANG Cao-shuai. Bearing capacity of suction tapered bucket foundations based on three-dimensional finite element numerical analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 485-490. |
[4] | WANG Yuanzhan, XIAO Zhong, LI Yuanyin, XIE Shanwen. Finite element analysis for earth pressure on bucket foundation of breakwater[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 622-627. |
[5] | HAN Bing, CAO Pinlu. Finite element analysis of interaction between soils and impact sampling bits[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1560-1563. |
[6] | JIANG Xinliang, ZONG Jinhui. Three-dimensional finite element analysis of seepage fields in foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 564-568. |
[7] | HUANG Yu, YASHIMA Atsushi, ZHANG Feng. Finite element analysis of pile-soil-structure dynamic interaction in liquefiable site[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 646-651. |
[8] | XING Haofeng, GONG Xiaonan, YANG Xiaojun. Simplified analysis for consolidation of gravel-pile composite foundation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 521-524. |
[9] | LU Xinzheng, SONG Erxiang, JI Lin, SUI Feng. 3-Dimensional FEA for the interaction between supporting structure of excavation and soil in a very deep pit[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(4): 488-491. |
[10] | Yu Zehong, Zhang Qisen. Finite Element Analysis for Mechanism of Geonets-Soil Interaction[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 79-85. |
1. |
温志辉,郭树乾,魏建平,张铁岗,王建伟,张立博,任永婕. 低频振动激励煤体共振增渗实验系统研制及应用. 煤田地质与勘探. 2024(09): 31-40 .
![]() | |
2. |
王雷鸣,李硕,尹升华,成亮,张超,陈威,薛森淼. 深地砂岩铀矿溶浸开采体系孔裂-渗流透明表征与定向干预研究进展. 绿色矿山. 2024(04): 381-396 .
![]() |