Citation: | CUI Hao, XIAO Yang, SUN Zeng-chun, WANG Cheng-gui, LIANG Fang, LIU Han-long. Elastoplastic constitutive model for biocemented sands[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 474-482. DOI: 10.11779/CJGE202203009 |
[1] |
何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643–653. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604010.htm
HE Jia, CHU Jian, LIU Han-long, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643–653. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604010.htm
|
[2] |
刘汉龙, 肖鹏, 肖杨, 等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报, 2019, 41(1): 1–14. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm
LIU Han-long, XIAO Peng, XIAO Yang, et al. State-of- the-art review of biogeotechnology and its engineering applications[J]. Journal of Civil and Environmental Engineering, 2019, 41(1): 1–14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm
|
[3] |
程晓辉, 麻强, 杨钻, 等. 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报, 2013, 35(8): 1486–1495. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308017.htm
CHENG Xiao-hui, MA Qiang, YANG Zuan, et al. Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1486–1495. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308017.htm
|
[4] |
张鑫磊, 陈育民, 张喆, 等. 微生物灌浆加固可液化钙质砂地基的振动台试验研究[J]. 岩土工程学报, 2020, 42(6): 1023–1031. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006007.htm
ZHANG Xin-lei, CHEN Yu-min, ZHANG Zhe, et al. Performance evaluation of liquefaction resistance of a MICP-treated calcareous sandy foundation using shake table tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1023–1031. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006007.htm
|
[5] |
马瑞男, 郭红仙, 程晓辉, 等. 微生物拌和加固钙质砂渗透特性试验研究[J]. 岩土力学, 2018, 39(增刊2): 217–223. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2031.htm
MA Rui-nan, GUO Hong-xian, CHENG Xiao-hui, et al. A Permeability experiment study of calcareous sand treated by microbially induced carbonate precipitation using mixing methods[J]. Rock and Soil Mechanics, 2018, 39(S2): 217–223. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2031.htm
|
[6] |
李贤, 汪时机, 何丙辉, 等. 土体适用MICP技术的渗透特性条件研究[J]. 岩土力学, 2019, 40(8): 2956–2964, 2974. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908010.htm
LI Xian, WANG Shi-ji, HE Bing-hui, et al. Permeability condition of soil suitable for MICP method[J]. Rock and Soil Mechanics, 2019, 40(8): 2956–2964, 2974. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908010.htm
|
[7] |
黄明, 张瑾璇, 靳贵晓, 等. 残积土MICP灌浆结石体冻融损伤的核磁共振特性试验研究[J]. 岩石力学与工程学报, 2018, 37(12): 2846–2855. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201812020.htm
HUANG Ming, ZHANG Jin-xuan, JIN Gui-xiao, et al. Magnetic resonance image experiments on the damage feature of microbial induced calcite precipitated residual soil during freezing-thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(12): 2846–2855. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201812020.htm
|
[8] |
刘士雨, 俞缙, 韩亮, 等. 三合土表面微生物诱导碳酸钙沉淀耐水性试验研究[J]. 岩石力学与工程学报, 2019, 38(8): 1718–1728. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201908022.htm
LIU Shi-yu, YU Jin, HAN Liang, et al. Experimental study on water resistance of tabia surface with microbially induced carbonate precipitation[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(8): 1718–1728. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201908022.htm
|
[9] |
欧孝夺, 莫鹏, 江杰, 等. 生石灰与微生物共同固化过湿性铝尾黏土试验研究[J]. 岩土工程学报, 2020, 42(4): 624–631. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004007.htm
OU Xiao-duo, MO Peng, JIANG Jie, et al. Experimental study on solidification of bauxite tailing clay with quicklime and microorganism[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 624–631. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004007.htm
|
[10] |
桂跃, 吴承坤, 刘颖伸, 等. 利用微生物技术改良泥炭土工程性质试验研究[J]. 岩土工程学报, 2020, 42(2): 269–278. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002011.htm
GUI Yue, WU Chng-kun, LIU Ying-shen, et al. Improving engineering properties of peaty soil by biogeotechnology[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 269–278. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002011.htm
|
[11] |
彭劼, 温智力, 刘志明, 等. 微生物诱导碳酸钙沉积加固有机质黏土的试验研究[J]. 岩土工程学报, 2019, 41(4): 733–740. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904022.htm
PENG Jie, WEN Zhi-li, LIU Zhi-ming, et al. Experimental research on MICP-treated organic clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 733–740. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904022.htm
|
[12] |
李驰, 王硕, 王燕星, 等. 沙漠微生物矿化覆膜及其稳定性的现场试验研究[J]. 岩土力学, 2019, 40(4): 1291–1298. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904007.htm
LI Chi, WANG Shuo, WANG Yan-xing, et al. Field experimental study on stability of bio-mineralization crust in the desert[J]. Rock and Soil Mechanics, 2019, 40(4): 1291–1298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904007.htm
|
[13] |
支永艳, 邓华锋, 肖瑶, 等. 微生物灌浆加固裂隙岩体的渗流特性分析[J]. 岩土力学, 2019, 40(增刊1): 237–244. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1036.htm
ZHI Yong-hua, DENG Hua-feng, XIAO Yao, et al. Analysis of seepage characteristics of fractured rock mass reinforced by microbial grouting[J]. Rock and Soil Mechanics, 2019, 40(S1): 237–244. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1036.htm
|
[14] |
FENG K, MONTOYA B M. Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(1): 04015057. doi: 10.1061/(ASCE)GT.1943-5606.0001379
|
[15] |
LIU L, LIU H, STUEDLEIN A W, et al. Strength, stiffness, and microstructure characteristics of biocemented calcareous sand[J]. Can Geotech J, 2019, 56(10): 1502–1513. doi: 10.1139/cgj-2018-0007
|
[16] |
MONTOYA B M, DEJONG J T. Stress-strain behavior of sands cemented by microbially induced calcite precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(6): 04015019. doi: 10.1061/(ASCE)GT.1943-5606.0001302
|
[17] |
CUI M J, ZHENG J J, ZHANG R J, et al. Influence of cementation level on the strength behaviour of bio-cemented sand[J]. Acta Geotechnica, 2017, 12(5): 971–986. doi: 10.1007/s11440-017-0574-9
|
[18] |
方祥位, 李晶鑫, 李捷, 等. 珊瑚砂微生物固化体三轴压缩试验及损伤本构模型研究[J]. 岩土力学, 2018, 39(增刊1): 1–8. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S1002.htm
FANG Xiang-wei, LI Jing-xin, LI Jie, et al. Study of triaxial compression test and damage constitutive model of biocemented coral sand columns [J]. Rock and Soil Mechanics, 2018, 39(S1): 1–8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S1002.htm
|
[19] |
GAI X R, SANCHEZ M. An elastoplastic mechanical constitutive model for microbially mediated cemented soils[J]. Acta Geotechnica, 2019, 14(3): 709–726. doi: 10.1007/s11440-018-0721-y
|
[20] |
XIAO P, LIU H, STUEDLEIN A W, et al. Effect of relative density and bio-cementation on the cyclic response of calcareous sand[J]. Can Geotech J, 2019, 56(12): 1849–1862. doi: 10.1139/cgj-2018-0573
|
[21] |
O'DONNELL T S, KAVAZANJIAN J E. Stiffness and dilatancy improvements in uncemented sands treated through micp[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(11): 02815004. doi: 10.1061/(ASCE)GT.1943-5606.0001407
|
[22] |
LIN H, SULEIMAN M T, BROWN D G, et al. Mechanical behavior of sands treated by microbially induced carbonate precipitation[J]. Journal of Geotechnical and Geo- environmental Engineering, 2016, 142(2): 13.
|
[23] |
XIAO Y, WANG Y, DESAI C S, et al. Strength and deformation responses of biocemented sands using a temperature-controlled method[J]. International Journal of Geomechanics, 2019, 19(11): 04019120. doi: 10.1061/(ASCE)GM.1943-5622.0001497
|
[24] |
CUI M J, ZHENG J J, CHU J, et al. Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand[J]. Acta Geotechnica, 2021, 16(5): 1377–1389. doi: 10.1007/s11440-020-01099-0
|
[25] |
YAO Y P, LIU L, LUO T, et al. Unified hardening (UH) model for clays and sands[J]. Computers and Geotechnics, 2019, 110: 326–343. doi: 10.1016/j.compgeo.2019.02.024
|
[26] |
BAUDET B, STALLEBRASS S. A constitutive model for structured clays[J]. Géotechnique, 2004, 54(4): 269–278. doi: 10.1680/geot.2004.54.4.269
|
[27] |
CHEN Q S, INDRARATNA B, CARTER J, et al. A theoretical and experimental study on the behaviour of lignosulfonate-treated sandy silt[J]. Computers and Geotechnics, 2014, 61: 316–327. doi: 10.1016/j.compgeo.2014.06.010
|
[28] |
LI X S, DAFALIAS Y, WANG Z L. State-dependant dilatancy in critical-state constitutive modelling of sand[J]. Can Geotech J, 1999, 36(4): 599–611. doi: 10.1139/t99-029
|
[29] |
SHEN J, CHIU C F, NG C W W, et al. A state-dependent critical state model for methane hydrate-bearing sand[J]. Computers and Geotechnics, 2016, 75: 1–11. doi: 10.1016/j.compgeo.2016.01.013
|
[30] |
LIU J, WANG S, JIANG M J, et al. A state-dependent hypoplastic model for methane hydrate-bearing sands[J]. Acta Geotechnica, 2021, 16(1): 77–91. doi: 10.1007/s11440-020-01076-7
|
[31] |
NG C W W, BAGHBANREZVAN S, KADLICEK T, et al. A state-dependent constitutive model for methane hydrate-bearing sediments inside the stability region[J]. Géotechnique, 2020, 70(12): 1094–1108. doi: 10.1680/jgeot.18.P.143
|
[32] |
BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99–112. doi: 10.1680/geot.1985.35.2.99
|
[33] |
LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449–460. doi: 10.1680/geot.2000.50.4.449
|
[34] |
XIAO Y, LIU H, CHEN Y, et al. Bounding surface model for rockfill materials dependent on density and pressure under triaxial stress conditions[J]. Journal of Engineering Mechanics, 2014, 140(4): 04014002. doi: 10.1061/(ASCE)EM.1943-7889.0000702
|
[35] |
孙增春, 汪成贵, 刘汉龙, 等. 粗粒土边界面塑性模型及其积分算法[J]. 岩土力学, 2020, 41(12): 3957–3967. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012015.htm
SUN Zeng-chun, WANG Cheng-gui, LIU Han-long, et al. Bounding surface plasticity model for granular soil and its integration algorithm[J]. Rock and Soil Mechanics, 2020, 41(12): 3957–3967. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012015.htm
|
[1] | BAN Liren, DU Weisheng, HOU Yuhang, QI Chengzhi, TAO Zhigang. Prediction model for dilation behaviors of soft rock joints considering degradation of actual contact 3D roughness[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1008-1017. DOI: 10.11779/CJGE20230104 |
[2] | SUN Yi-fei, GAO Yu-feng, JU Wen. Fractional plasticity and its application in constitutive model for sands[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1535-1541. DOI: 10.11779/CJGE201808021 |
[3] | ZHANG Fu-guang, JIANG Ming-jing. Three-dimensional constitutive model for cemented sands based on micro-mechanism of bond degradation[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1424-1432. DOI: 10.11779/CJGE201808007 |
[4] | SONG Shi-xiong, ZHANG Jian-min. Thermodynamic constitutive model for rheological behavior of sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 129-133. DOI: 10.11779/CJGE2015S1026 |
[5] | WANG Zhan-jun, CHEN Shen-shui, FU Zhong-zhi. Viscoelastic-plastic constitutive model for creep deformation of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2188-2194. DOI: 10.11779/CJGE201412005 |
[6] | JIANG Ming-jing, ZHANG Fu-guang, SUN Yu-gang. Numerical evaluation of degradation evolutions in three constitutive models for bonded geomaterials by distinct element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 805-813. |
[7] | Degrading deformation of rockfill materials and its constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1). |
[8] | XU Shunhua, ZHENG Gang, XU Guangli. Critical state constitutive model of sand with shear hardening[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 953-958. |
[9] | CAI Zhengyin, LI Xiangsong. Development of dilatancy theory and constitutive model of sand[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1122-1128. |
[10] | ZHANG Luyu. The 3D images of geotechnical constitutive models in the stress space[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 64-68. |
1. |
张瑾璇,刘汉龙,肖杨. 液滴微流控芯片系统研发与微生物矿化机理研究. 岩土工程学报. 2024(06): 1236-1245 .
![]() | |
2. |
刘汉龙,赵常,肖杨. 微生物矿化反应原理、沉积与破坏机制及理论:研究进展与挑战. 岩土工程学报. 2024(07): 1347-1358 .
![]() | |
3. |
季一帆,谢立全,马士力,郑永来,李文麟. 微生物固化土不排水剪切特性试验研究. 施工技术(中英文). 2024(15): 117-122 .
![]() | |
4. |
孙增春,陈萌,肖杨,樊恒辉. 考虑状态相关的饱和黏土热弹塑性本构模型. 中国科学:技术科学. 2024(10): 2030-2041 .
![]() | |
5. |
李爽,黄明,崔明娟,胡鑫杭,许凯,姜启武. 纳米四氧化三铁对微生物诱导碳酸钙沉淀的作用效果与机理研究. 材料导报. 2024(20): 80-87 .
![]() | |
6. |
贾宇峰,冯文泉,迟世春. 筑坝土石料填筑干密度数字特征的动态优化方法研究. 岩土工程学报. 2024(12): 2521-2528 .
![]() | |
7. |
何玉琪,廖红建,倪诗雨,牛波. 超疏水材料改良黄土的宏微观抗渗机制研究. 西安交通大学学报. 2022(11): 62-71 .
![]() | |
8. |
雷祖祥,刘明明,童立红,薛威,路华丽. 饱和砂土状态演化模型试验研究. 建筑结构. 2022(S2): 2188-2193 .
![]() |