• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Dianqing, DING Shaolin, CAO Zijun, TAO Rui. One-stage Bayesian experimental design optimization for measuring soil-water characteristic curve[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1212-1221. DOI: 10.11779/CJGE20220263
Citation: LI Dianqing, DING Shaolin, CAO Zijun, TAO Rui. One-stage Bayesian experimental design optimization for measuring soil-water characteristic curve[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1212-1221. DOI: 10.11779/CJGE20220263

One-stage Bayesian experimental design optimization for measuring soil-water characteristic curve

More Information
  • Received Date: March 10, 2022
  • Available Online: February 15, 2023
  • The direct measurements of soil-water characteristic curve (SWCC) are often costly and time-consuming. Therefore, only a limited number of test data can be obtained from a single SWCC test, based on which the estimated SWCC inevitably produces uncertainty. It is reasonable to select the experimental scheme (i.e., specify the values of the control variables at measuring points) in order to improve the expected value of information of the measurement data for reducing the uncertainty in the estimated SWCC. A one-stage Bayesian experimental design optimization (OBEDO) approach is developed for SWCC testing exploiting prior knowledge and information of testing apparatus. Discretization of control variables (e.g., matric suction) is used to generate the design space of the candidate experimental scheme, which is specified by the initial measuring points and the additional measuring points to control the general trajectory of SWCC and further reduce the uncertainty in SWCC, respectively. The value of data corresponding to the experimental scheme is quantified by the expected utility. The candidate experimental scheme with the maximum expected utility is identified using the subset simulation optimization (SSO) and treated as the optimal experimental design scheme. The proposed approach is illustrated using an experimental design example. The results show that it provides a rational tool to determine the optimal experiment scheme for SWCC testing considering the uncertainty of soil.
  • [1]
    LU N, LIKOS W J. Unsaturated Soil Mechanics[M]. New Jersey: Wiley, 2004: 40-42.
    [2]
    NAM S, GUTIERREZ M, DIPLAS P, et al. Comparison of testing techniques and models for establishing the SWCC of riverbank soils[J]. Engineering Geology, 2010, 110(1/2): 1-10. http://www.researchgate.net/profile/Panayiotis_Diplas/publication/222581777_Comparison_of_testing_techniques_and_models_for_establishing_the_SWCC_of_riverbank_soils/links/02bfe50dda8e569bcd000000
    [3]
    邢旭光, 赵文刚, 马孝义, 等. 土壤水分特征曲线测定过程中土壤收缩特性研究[J]. 水利学报, 2015, 46(10): 1181-1188. doi: 10.13243/j.cnki.slxb.20150632

    XING Xuguang, ZHAO Wengang, MA Xiaoyi, et al. Study on soil shrinkage characteristics during soil water characteristic curve measurement[J]. Journal of Hydraulic Engineering, 2015, 46(10): 1181-1188. (in Chinese) doi: 10.13243/j.cnki.slxb.20150632
    [4]
    GATABIN C, TALANDIER J, COLLIN F, et al. Competing effects of volume change and water uptake on the water retention behaviour of a compacted MX-80 bentonite/sand mixture[J]. Applied Clay Science, 2016, 121/122: 57-62. doi: 10.1016/j.clay.2015.12.019
    [5]
    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
    [6]
    FREDLUND D G, XING A Q. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532. doi: 10.1139/t94-061
    [7]
    陶睿, 李典庆, 曹子君, 等. 含砂黄土土水特征曲线试验研究与参数识别[J]. 武汉大学学报(工学版), 2021, 54(7): 579-587. doi: 10.14188/j.1671-8844.2021-07-001

    (TAO Rui, LI Dianqing, CAO Zijun, et al. Experimental study and parameter identification of soil water characteristic curve of sandy loess[J]. Engineering Journal of Wuhan University, 2021, 54(7): 579-587. doi: 10.14188/j.1671-8844.2021-07-001
    [8]
    WANG L, CAO Z J, LI D Q, et al. Determination of site-specific soil-water characteristic curve from a limited number of test data–A Bayesian perspective[J]. Geoscience Frontiers, 2018, 9(6): 1665-1677. doi: 10.1016/j.gsf.2017.10.014
    [9]
    王林, 李典庆, 曹子君, 等. 基于贝叶斯理论的土水特征曲线模型选择与参数识别方法[J]. 应用基础与工程科学学报, 2019, 27(6): 1269-1284. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201906008.htm

    WANG Lin, LI Dianqing, CAO Zijun, et al. Bayesian approaches for model selection and parameter identification of soil-water characteristic curve[J]. Journal of Basic Science and Engineering, 2019, 27(6): 1269-1284. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201906008.htm
    [10]
    SIVIA D, SKILLING J. Data Analysis: A Bayesian Tutorial[M]. Oxford: OUP Oxford, 2006.
    [11]
    张万涛, 余宏明. 正交试验设计方法在库岸滑坡敏感性分析中的应用[J]. 安全与环境工程, 2009, 16(5): 13-16. doi: 10.3969/j.issn.1671-1556.2009.05.004

    ZHANG Wantao, YU Hongming. Applications of orthogonal experiment design to sensitivity analysis of bank landslide[J]. Safety and Environmental Engineering, 2009, 16(5): 13-16. (in Chinese) doi: 10.3969/j.issn.1671-1556.2009.05.004
    [12]
    STRAUB D. Value of information analysis with structural reliability methods[J]. Structural Safety, 2014, 49: 75-85. doi: 10.1016/j.strusafe.2013.08.006
    [13]
    SCHWECKENDIEK T, VROUWENVELDER A C W M. Reliability updating and decision analysis for head monitoring of levees[J]. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2013, 7(2): 110-121. doi: 10.1080/17499518.2013.791034
    [14]
    LI X Y, ZHANG L M, JIANG S H, et al. Assessment of slope stability in the monitoring parameter space[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(7): 04016029. doi: 10.1061/(ASCE)GT.1943-5606.0001490
    [15]
    LI H S. Subset simulation for unconstrained global optimization[J]. Applied Mathematical Modelling, 2011, 35(10): 5108-5120. doi: 10.1016/j.apm.2011.04.023
    [16]
    ZHAI Q, RAHARDJO H. Determination of soil-water characteristic curve variables[J]. Computers and Geotechnics, 2012, 42: 37-43. doi: 10.1016/j.compgeo.2011.11.010
    [17]
    ZHAI Q, RAHARDJO H, SATYANAGA A. Effects of residual suction and residual water content on the estimation of permeability function[J]. Geoderma, 2017, 303: 165-177. doi: 10.1016/j.geoderma.2017.05.019
    [18]
    丁少林. 考虑不确定性的土水特征曲线室内试验设计与含气土现场勘探优化方法[D]. 武汉: 武汉大学, 2022.

    DING Shaolin. Laboratory experimental design of soil-water characteristic curve and site investigation optimization of gassy soils considering uncertainty[D]. Wuhan: Wuhan University, 2022. (in Chinese)
    [19]
    HUAN X, MARZOUK Y M. Simulation-based optimal Bayesian experimental design for nonlinear systems[J]. Journal of Computational Physics, 2013, 232(1): 288-317. doi: 10.1016/j.jcp.2012.08.013
    [20]
    CHIU C F, YAN W M, YUEN K V. Reliability analysis of soil–water characteristics curve and its application to slope stability analysis[J]. Engineering Geology, 2012, 135/136: 83-91. doi: 10.1016/j.enggeo.2012.03.004
    [21]
    BISHOP C M. Pattern Recognition and Machine Learning[M]. New York: Springer, 2006.
    [22]
    ZHOU Y F, THAM L G, YAN R W M, et al. The mechanism of soil failures along cracks subjected to water infiltration[J]. Computers and Geotechnics, 2014, 55: 330-341. doi: 10.1016/j.compgeo.2013.09.009
    [23]
    LI X P, WANG C H, XU J. Surficial stability analysis of unsaturated loess slopes subjected to rainfall infiltration effects[J]. Wuhan University Journal of Natural Sciences, 2006, 11(4): 825-828. http://www.cqvip.com/QK/85480X/200604/22434488.html
  • Related Articles

    [1]Soil-water characteristic curve model considering grain size gradation and deformation of soil[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240339
    [2]FEI Suo-zhu, TAN Xiao-hui, DONG Xiao-le, ZHA Fu-sheng, XU Long. Prediction of soil-water characteristic curve based on pore size distribution of soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1691-1699. DOI: 10.11779/CJGE202109014
    [3]LIU Yan, YU Jian-tao. Hysteresis model for soil-water characteristic curve under dynamic conditions[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 62-68. DOI: 10.11779/CJGE202101007
    [4]TAO Gao-liang, KONG Ling-wei. Prediction of air-entry value and soil-water characteristic curve of soils with different initial void ratios[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 34-38. DOI: 10.11779/CJGE2018S1006
    [5]MA Tian-tian, WEI Chang-fu, ZHOU Jia-zuo, TIAN Hui-hui. Freezing characteristic curves and water retention characteristics of soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 172-177. DOI: 10.11779/CJGE2015S1033
    [6]MEI Ling, JIANG Peng-ming, LI Peng, ZHOU Ai-zhao. Soil-water characteristic curve tests on unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 124-128.
    [7]LIU Xiao-dong, SHI Jian-yong. Unsaturated conductivity of MSW based on soil-water characteristic curve[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 855-862.
    [8]WANG Yu, WU Gang. Understanding and modelling soil-water characteristic curves[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1282-1290.
    [9]LIU Yan, ZHAO Chenggang. Hysteresis model for soil-water characteristic curves[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 399-405.
    [10]LU Jing, CHENG Bin. Research on soil-water characteristic curve of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1591-1592.
  • Cited by

    Periodical cited type(1)

    1. 聂正,张电吉,周昌育,王靖禹,蒋琴琴,柳锐. 坡顶裂隙对边坡渗流规律及稳定的影响. 现代矿业. 2024(03): 91-94 .

    Other cited types(0)

Catalog

    Article views (304) PDF downloads (99) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return