• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Yan, YU Jian-tao. Hysteresis model for soil-water characteristic curve under dynamic conditions[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 62-68. DOI: 10.11779/CJGE202101007
Citation: LIU Yan, YU Jian-tao. Hysteresis model for soil-water characteristic curve under dynamic conditions[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 62-68. DOI: 10.11779/CJGE202101007

Hysteresis model for soil-water characteristic curve under dynamic conditions

More Information
  • Received Date: January 15, 2020
  • Available Online: December 04, 2022
  • The soil-water characteristic curve (SWCC) is essential to describe the behavior of unsaturated soils. The capillary hysteresis is an important effect that should be accounted in the equations for SWCC. The existing SWCC models are mainly based on the equilibrium condition. However, there is ample theoretical and experimental evidence that the curve is not unique under dynamic conditions. The dynamic capillary pressure is larger than the static one in drainage and smaller in wetting. A thermodynamic theoretical basis for the SWCC under dynamic conditions is given. A dynamic capillary hysteresis model is developed based on the bounding surface plasticity. Provided that the main drying and wetting curves have been experimentally determined, the model is capable of predicting all the scanning curves. The model predictions are compared with the existing experiments found in the literatures, showing a good accordance with the test data for both the drying and wetting conditions. The results can then be used to explain some practical problems such as foundation settlement and slope stability.
  • [1]
    陈正汉, 郭楠. 非饱和土与特殊土力学及工程应用研究的新进展[J]. 岩土力学, 2019, 40(1): 1-54. doi: 10.16285/j.rsm.2017.2577

    CHEN Zheng-han, GUO Nan. New developments of mechanics and application for unsaturated soils and special soils[J]. Rock and Soil Mechanics, 2019, 40(1): 1-54. (in Chinese) doi: 10.16285/j.rsm.2017.2577
    [2]
    PHAM H Q, FREDLUND D G, BARBOUR S L. A study of hysteresis models for soil-water characteristic curves[J]. Canadian Geotechnical Journal, 2005, 42(6): 1548-1568. doi: 10.1139/t05-071
    [3]
    张芳枝, 陈晓平. 反复干湿循环对非饱和土的力学特性影响研究[J]. 岩土工程学报, 2010, 32(1): 41-46. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201001009.htm

    ZHANG Fang-zhi, CHEN Xiao-ping. Influence of repeated drying and wetting cycles on mechanical behaviors of unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 41-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201001009.htm
    [4]
    李军, 刘奉银, 王磊. 关于土水特征曲线滞回特性影响因素的研究[J]. 水利学报, 2015, 46(增刊1): 194-199. doi: 10.13243/j.cnki.slxb.2015.S1.036

    LI Jun, LIU Feng-yin, WANG Lei. Study on the influencing factors of hysteretic characteristics of soil-water characteristic curve[J]. Journal of Hydraulic Engineering, 2015, 46(S1): 194-199. (in Chinese) doi: 10.13243/j.cnki.slxb.2015.S1.036
    [5]
    陈留凤, 彭华. 干湿循环对硬黏土的土水特性影响规律研究[J]. 岩石力学与工程学报, 2016, 35(11): 2337-2344. doi: 10.13722/j.cnki.jrme.2015.1509

    CHEN Liu-feng, PENG Hua. Experimental study on the water retention properties of the hard clay under cyclic suction conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(11): 2337-2344. (in Chinese) doi: 10.13722/j.cnki.jrme.2015.1509
    [6]
    陈勇, 苏剑, 谈云志. 循环脱吸湿与加卸载耦合作用下土体持水性能试验研究[J]. 岩土力学, 2019, 40(8): 2907-2913. doi: 10.16285/j.rsm.2018.0908

    CHEN Yong, SU Jian, TAN Yun-zhi. Water retention capacities of soils under the coupling actions of cyclic drying-wetting and repeated loading-unloading[J]. Rock and Soil Mechanics, 2019, 40(8): 2907-2913. (in Chinese) doi: 10.16285/j.rsm.2018.0908
    [7]
    张俊然, 许强, 孙德安. 多次干湿循环后土-水特征曲线的模拟[J]. 岩土力学, 2014, 35(3): 689-695. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403013.htm

    ZHANG Jun-ran, XU Qiang, SUN De-an. Simulation of soil-water characteristic curves during drying and wetting cycles[J]. Rock and Soil Mechanics, 2014, 35(3): 689-695. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403013.htm
    [8]
    黎澄生, 孔令伟, 柏巍. 土-水特征曲线滞后阻塞模型[J]. 岩土力学, 2018, 39(2): 598-604. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201802025.htm

    LI Cheng-sheng, KONG Ling-wei, BAI Wei. Hysteresis model of soil-water characteristic curve[J]. Rock and Soil Mechanics, 2018, 39(2): 598-604. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201802025.htm
    [9]
    杨明辉, 陈贺, 陈可. 基于分形理论的SWCC边界曲线滞后效应模型研究[J]. 岩土力学, 2019, 40(10): 3805-3812. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910015.htm

    YANG Ming-hui, CHEN He, CHEN Ke. Study of the hysteresis effect model of SWCC boundary curves based on fractal theory[J]. Rock and Soil Mechanics, 2019, 40(10): 3805-3812. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910015.htm
    [10]
    贺炜, 赵明华, 陈永贵. 土-水特征曲线滞后现象的微观机制与计算分析[J]. 岩土力学, 2010, 31(4): 1078-1083. doi: 10.3969/j.issn.1000-7598.2010.04.012

    HE Wei, ZHAO Ming-hua, CHEN Yong-gui. Theoretical study of microscopical mechanisms and computational method of hysteresis in SWCCs[J]. Rock and Soil Mechanics, 2010, 31(4): 1078-1083. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.04.012
    [11]
    LI X S. Modelling of hysteresis response for arbitrary wetting/drying paths[J]. Computers and Geotechnics, 2005, 32(2): 133-137.
    [12]
    WEI C F, DEWOOLKAR M M. Formulation of capillary hysteresis with internal state variables[J]. Water Resources Research, 2006, 42(7): W7405.
    [13]
    刘艳, 赵成刚. 土水特征曲线滞后模型的研究[J]. 岩土工程学报, 2008, 29(3): 399-405. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200803018.htm

    LIU Yan, ZHAO Cheng-gang. Hysteresis model for soil-water characteristic curves[J]. Chinese Journal of Geotechnical Engineering, 2008, 29(3): 399-405. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200803018.htm
    [14]
    陆业奇, 刘斯宏, 傅中志. 土水特征曲线的一个滞回模型[J]. 河海大学学报(自然科学版), 2012, 40(2): 186-190. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201202014.htm

    LU Ye-qi, LIU Si-hong, FU Zhong-zhi. A hysteresis model for soil-water characteristic curves[J]. Journal of Hohai University (Natural Sciences), 2012, 40(2): 186-190. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201202014.htm
    [15]
    AZIZI A, JOMMI C, MUSSO G. A water retention model accounting for the hysteresis induced by hydraulic and mechanical wetting-drying cycles[J]. Computers and Geotechnics, 2017, 87: 86-98.
    [16]
    ZHOU A. A contact angle-dependent hysteresis model for soil-water retention behaviour[J]. Computers and Geotechnics, 2013, 49: 36-42.
    [17]
    高游, 孙德安, 张俊然. 考虑孔隙比和水力路径影响的非饱和土土水特性研究[J]. 岩土工程学报, 2019, 41(12): 2191-2196. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912006.htm

    GAO You, SUN De-an, ZHANG Jun-ran. Soil-water characteristics of unsaturated soils considering initial void ratio and hydraulic path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2191-2196. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912006.htm
    [18]
    WILDENSCHILD D, HOPMANS J W, SIMUNEK J. Flow rate dependence of soil hydraulic characteristics[J]. Soil Science Society of America Journal, 2001, 65(1): 35-48.
    [19]
    DIAMANTOPOULOS E, DURNER W. Dynamic nonequilibrium of water flow in porous media: a review[J]. Vadose Zone Journal, 2012, 11(3): vzj2011.0197.
    [20]
    伊盼盼, 牛圣宽, 韦昌富. 基于动态多步流动法的非饱和土水力特性测试研究[J]. 岩土工程学报, 2016, 38(10): 1797-1801. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201610010.htm

    YI Pan-pan, NIU Sheng-kuan, WEI Chang-fu. Dynamic multi-step outflow method for tests on hydraulic properties of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1797-1801. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201610010.htm
    [21]
    TOPP G C, KLUTE A, PETERS D B. Comparison of water content-pressure head data obtained by equilibrium, steady-state, and unsteady-state methods1[J]. Soil Science Society of America Journal, 1967, 31(3): 312-314.
    [22]
    SMILES D E, VACHAUD G, VAUCLIN M. A test of the uniqueness of the soil moisture characteristic during transient, nonhysteretic flow of water in a rigid soil1[J]. Soil Science Society of America Journal, 1971, 35(4): 534-539.
    [23]
    HASSANIZADEH S M, CELIA M A, DAHLE H K. Dynamic effect in the capillary pressure-saturation relationship and its impacts on unsaturated flow[J]. Vadose Zone Journal, 2002, 1(1): 38-57.
    [24]
    FRIEDMAN S P. Dynamic contact angle explanation of flow rate-dependent saturation-pressure relationships during transient liquid flow in unsaturated porous media[J]. Journal of Adhesion Science and Technology, 1999, 13(12): 1495-1518.
    [25]
    WEI C, MURALEETHARAN K K. Linear viscoelastic behavior of porous media with non-uniform saturation[J]. International Journal of Engineering Science, 2007, 45(2/3/4/5/6/7/8): 698-715.
    [26]
    DIAMANTOPOULOS E, DURNER W, IDEN S C, et al. Modeling dynamic non-equilibrium water flow observations under various boundary conditions[J]. Journal of Hydrology, 2015, 529: 1851-1858.
    [27]
    JOEKAR-NIASAR V, HASSANIZADEH S M, DAHLE H K. Non-equilibrium effects in capillarity and interfacial area in two-phase flow: dynamic pore-network modelling[J]. Journal of Fluid Mechanics, 2010, 655: 38-71.
    [28]
    ROSS P J, SMETTEM K R J. A Simple Treatment of Physical Nonequilibrium Water Flow in Soils[J]. Soil Science Society of America Journal, 2000, 64(6): 1926-1930.
    [29]
    ZHAO C G, LIU Y, GAO F P. Work and energy equations and the principle of generalized effective stress for unsaturated soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(9): 920-936.
    [30]
    刘艳, 赵成刚, 李舰, 等. 相间交界面对非饱和土应力状态的影响[J]. 力学学报, 2017(2): 335-343. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201702010.htm

    LIU Yan, ZHAO Cheng-gang, LI Jian, et al. The influence of interfaces on the stress state in unsaturated soils[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017(2): 335-343. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201702010.htm
    [31]
    HASSANIZADEH S M, GRAY W G. Thermodynamic basis of capillary pressure in porous media[J]. Water Resources Research, 1993, 29(10): 3389-3405.
    [32]
    MIRZAEI M, DAS D B. Experimental investigation of hysteretic dynamic effect in capillary pressure-saturation relationship for two-phase flow in porous media[J]. AIChE Journal, 2013, 59(10): 3958-3974.
    [33]
    FENG M, FREDLUND D G, Hysteretic influence associated with thermal conductivity sensor measurements[C]//Proceeding From Theory to the Practice of Unsaturated Soil Mechanics, 1999, Canada, 14214-14220.
    [34]
    ZHUANG L, HASSANIZADEH S M, QIN C, et al. Experimental investigation of hysteretic dynamic capillarity effect in unsaturated flow[J]. Water Resources Research, 2017, 53(11): 9078-9088.
    [35]
    MILATZ M, TÖRZS T, NIKOOEE E, et al. Theoretical and experimental investigations on the role of transient effects in the water retention behaviour of unsaturated granular soils[J]. Geomechanics for Energy and the Environment, 2018, 15: 54-64.

Catalog

    Article views (346) PDF downloads (203) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return