• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CUI Chunyi, XIN Yu, XU Chengshun, LIANG Zhimeng, WANG Benlong. Analytical solutions for horizontal dynamic response for pile groups based on Pasternak model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 893-902. DOI: 10.11779/CJGE20220235
Citation: CUI Chunyi, XIN Yu, XU Chengshun, LIANG Zhimeng, WANG Benlong. Analytical solutions for horizontal dynamic response for pile groups based on Pasternak model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 893-902. DOI: 10.11779/CJGE20220235

Analytical solutions for horizontal dynamic response for pile groups based on Pasternak model

More Information
  • Received Date: March 06, 2022
  • Available Online: May 18, 2023
  • A simplified model for a single pile is established based on the Pasternak foundation and Euler beam models considering the axial second-order effects of pile shaft. The corresponding analytical solutions are derived by utilizing the differential transformation methods and the double-shear theory as well as the pile-soil continuity conditions. Then, considering the dynamic displacement of receiver pile Ⅱ caused by the vibration of source pile Ⅰ, the control equation for horizontal vibration of receiver pile Ⅱ is established, and the analytical solutions for the response of receiver pile Ⅱ are obtained. According to the definition of dynamic interaction factor, the pile-pile horizontal dynamic interaction factor is further obtained. Finally, the superposition principle is used to solve the horizontal dynamic impedance of pile groups, and its rationality is verified by comparing with the existing analytical solutions. On this basis, the influences of soil shear coefficient, pile type, pile to diameter ratio and axial feature parameters on the horizontal impedance of pile groups are discussed through the parametric analysis, and the distribution of the reaction force at the top of the pile and the distribution of the internal force of the pile body are discussed. It may provide theoretical guidance and reference for the design of pile groups in practical engineering.
  • [1]
    KUO K A, HUNT H E M. Dynamic models of piled foundations[J]. Applied Mechanics Reviews, 2013, 65(3): 031003. doi: 10.1115/1.4024675
    [2]
    ALLANI M, HOLEYMAN A. Numerical evaluation of effects of nonlinear lateral pile vibrations on nonlinear axial response of pile shaft[J]. Soils and Foundations, 2013, 53(3): 395-407. doi: 10.1016/j.sandf.2013.04.002
    [3]
    艾智勇, 李志雄. 冲刷作用下层状横观各向同性土中群桩水平振动响应[J]. 岩土工程学报, 2016, 38(4): 613-618. doi: 10.11779/CJGE201604004

    AI Zhiyong, LI Zhixiong. Horizontal vibration of a pile group in transversely isotropic layered soils under scour conditions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 613-618. (in Chinese) doi: 10.11779/CJGE201604004
    [4]
    POULOS H G. Analysis of the settlement of pile groups[J]. Géotechnique, 1968, 18(4): 449-471. doi: 10.1680/geot.1968.18.4.449
    [5]
    LUAN L B, ZHENG C J, KOURETZIS G, et al. Development of a three-dimensional soil model for the dynamic analysis of end-bearing pile groups subjected to vertical loads[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(9): 1784-1793. doi: 10.1002/nag.2932
    [6]
    LUAN L, ZHENG C, KOURETZIS G, et al. Dynamic analysis of pile groups subjected to horizontal loads considering coupled pile-to-pile interaction[J]. Computers and Geotechnics, 2020, 117: 103276. doi: 10.1016/j.compgeo.2019.103276
    [7]
    KAYNIA A M, KAUSEl E. Dynamic Stiffness and Seismic Response of Pile Groups[R]. Cambridge: Massachusetts Institute of Technology, 1982.
    [8]
    MYLONAKIS G, GAZETAS G. Lateral vibration and internal forces of grouped piles in layered soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(1): 16-25. doi: 10.1061/(ASCE)1090-0241(1999)125:1(16)
    [9]
    蒯行成, 沈蒲生. 层状介质中群桩水平动力阻抗的简化计算方法[J]. 振动工程学报, 1998, 11(3): 258-264. doi: 10.16385/j.cnki.issn.1004-4523.1998.03.002

    KUAI Xingcheng, SHEN Pusheng. Simplified method for calculating horizontal dynamic impedances of pile groups in layered media[J]. Journal of Vibration Engineering, 1998, 11(3): 258-264. (in Chinese) doi: 10.16385/j.cnki.issn.1004-4523.1998.03.002
    [10]
    吴志明, 黄茂松, 吕丽芳. 桩-桩水平振动动力相互作用研究[J]. 岩土力学, 2007, 28(9): 1848-1855. doi: 10.3969/j.issn.1000-7598.2007.09.015

    WU Zhiming, HUANG Maosong, LÜ Lifang. Research on pile-pile dynamic interaction of lateral vibration[J]. Rock and Soil Mechanics, 2007, 28(9): 1848-1855. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.09.015
    [11]
    黄茂松, 吴志明, 任青. 层状地基中群桩的水平振动特性[J]. 岩土工程学报, 2007, 29(1): 32-38. doi: 10.3321/j.issn:1000-4548.2007.01.005

    HUANG Maosong, WU Zhiming, REN Qing. Lateral vibration of pile groups in layered soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 32-38. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.01.005
    [12]
    高广运, 赵元一, 高盟, 等. 分层土中群桩水平动力阻抗的改进计算[J]. 岩土力学, 2010, 31(2): 509-515. doi: 10.3969/j.issn.1000-7598.2010.02.029

    GAO Guangyun, ZHAO Yuanyi, GAO Meng, et al. Improved calculation for lateral dynamic impedance of pile groups in layered soil[J]. Rock and Soil Mechanics, 2010, 31(2): 509-515. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.02.029
    [13]
    黄茂松, 钟锐. 海上风机部分埋入群桩水平-摇摆振动与结构共振分析[J]. 岩土工程学报, 2014, 36(2): 286-294. doi: 10.11779/CJGE201402003

    HUANG Maosong, ZHONG Rui. Coupled horizontal-rocking vibration of partially embedded pile groups and its effect on resonance of offshore wind turbine structures[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 286-294. (in Chinese) doi: 10.11779/CJGE201402003
    [14]
    PASTERNAK P L. Fundamentals of a New Method of Analyzing Structures on an Elastic Foundation by Means of Two Foundation Constants[M]. Moscow: Gosudarstvennoe Izdatelstro Liberaturi Po Stroitelstvui Arkhitekture, 1954.
    [15]
    YOKOYAMA T. Vibrations of Timoshenko beam-columns on two-parameter elastic foundations[J]. Earthquake Engineering & Structural Dynamics, 1991, 20(4): 355-370.
    [16]
    FILIPICH C P, ROSALES M B. A further study about the behaviour of foundation piles and beams in a Winkler-Pasternak soil[J]. International Journal of Mechanical Sciences, 2002, 44(1): 21-36. doi: 10.1016/S0020-7403(01)00087-X
    [17]
    ZHOU D, LO S H, AU F T K, et al. Three dimensional free vibration of thick circular plates on Pasternak foundation[J]. Journal of Sound and Vibration, 2006, 292 (3): 726-741.
    [18]
    HIZAL C, CATAL H H. Rotary inertia and higher modes effect on the dynamic response of Timoshenko beams on two-parameter elastic foundation[J]. Teknik Dergi, 2019, 30(4): 9289-9308. doi: 10.18400/tekderg.408772
    [19]
    张治国, 徐晨, 宫剑飞. 考虑桩侧土体三维效应和地基剪切变形的隧道开挖对邻近桩基影响分析[J]. 岩土工程学报, 2016, 38(5): 846-856. doi: 10.11779/CJGE201605010

    ZHANG Zhiguo, XU Chen, GONG Jianfei. Influence of tunneling on deflection of adjacent piles considering shearing deformation of foundation and 3D effects of lateral soils beside piles[J] Chinese Journal of Geotechnical Engineering, 2016, 38(5): 846-856. (in Chinese) doi: 10.11779/CJGE201605010
    [20]
    WANG J, ZHOU D, LIU W. Horizontal impedance of pile groups considering shear behavior of multilayered soils[J]. Soils and Foundations, 2014, 54(5): 927-937. doi: 10.1016/j.sandf.2014.09.001
    [21]
    WANG J, LO S H, ZHOU D. Effect of a forced harmonic vibration pile to its adjacent pile in layered elastic soil with double-shear model[J]. Soil Dynamics and Earthquake Engineering, 2014, 67: 54-65. doi: 10.1016/j.soildyn.2014.09.001
    [22]
    VEGA-POSADA C A, GALLANT A P, AREIZA-HURTADO M. Simple approach for analysis of beam-column elements on homogeneous and non-homogeneous elastic soil[J]. Engineering Structures, 2020, 221: 111110. doi: 10.1016/j.engstruct.2020.111110
    [23]
    HALABE U B. Lateral free vibration of a single pile with or without an axial load[J]. Journal of Sound and Vibration, 1996, 195(3): 531-544. doi: 10.1006/jsvi.1996.0443
    [24]
    熊辉, 尚守平. 轴、横向力作用下土-群桩动力效应简化分析[J]. 岩土力学, 2006, 27(12): 2163-2168. doi: 10.3969/j.issn.1000-7598.2006.12.015

    XIONG Hui, SHANG Shouping. Simplified analysis of pile-group-soil effect under axial and horizontal interactive excitation[J]. Rock and Soil Mechanics, 2006, 27(12): 2163-2168. (in Chinese) doi: 10.3969/j.issn.1000-7598.2006.12.015
    [25]
    任青, 黄茂松, 韩东晓. 考虑轴力的部分埋入群桩基础水平振动特性[J]. 岩石力学与工程学报, 2011, 30(9): 1932-1944.

    REN Qing, HUANG Maosong, HAN Dongxiao. Lateral vibration properties of partially embedded pile groups foundation considering axial forces[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(9): 1932-1944. (in Chinese)
    [26]
    熊辉, 江雅丰, 禹荣霞. 层状地基中基于Laplace变换的桩基横向振动阻抗计算[J]. 岩土力学, 2018, 39(5): 1901-1907. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805044.htm

    XIONG Hui, JIANG Yafeng, YU Rongxia. Lateral vibration impedance of piles embedded in layered soil based on Laplace transform[J]. Rock and Soil Mechanics, 2018, 39(5): 1901-1907. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805044.htm
    [27]
    JIANG J G, ZHOU X H, ZHANG J S. Dynamic interaction factor considering axial load[J]. Geotechnical and Geological Engineering, 2007, 25(4): 423-429.
  • Related Articles

    [1]SUN Ruohan, LIU Run, WANG Xiaolei, ZHANG Huan. Effects of horizontal and three-dimensional reinforcement on frost-heaving and thawing-settlement in seasonally frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 16-21. DOI: 10.11779/CJGE2024S10025
    [2]Experimental study on frost heave characteristics of the PCM-clay under one-dimensional freeze-thaw[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20230837
    [3]LÜ Zhi-tao, XIA Cai-chu, LI Qiang, WANG Yue-song. Frost heave experiments on saturated sandstone under unidirectional freezing conditions in an open system and coupled THM frost heave model[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1435-1444. DOI: 10.11779/CJGE201908007
    [4]GU Qi, WANG Jia-ding, SI Dong-dong, XU Yuan-jun, CHEN-peng, LI Bin. Effect of freeze-thaw cycles on collapsibility of loess under different moisture contents[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1187-1192. DOI: 10.11779/CJGE201607004
    [5]BAI Qing-bo, LI Xu, TIAN Ya-hu, FANG Jian-hong. Equations and numerical simulation for coupled water and heat transfer in frozen soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 131-136. DOI: 10.11779/CJGE2015S2026
    [6]LI Zhuo, SHENG Jing-bao, LIU Si-hong, HE Yong-jun, LI Ya-jun. Model tests on frost heave-prevented channels using soilbags[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1455-1463. DOI: 10.11779/CJGE201408011
    [7]WANG Tian-liang, BU Jian-qing, WANG Yang, XU Lei, YAN Han. Thaw subsidence properties of soils under repeated freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 625-632. DOI: 10.11779/CJGE201404005
    [8]Separate ice frost heave model for coupled moisture and heat transfer in saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1746-1751.
    [9]Ice lens growth process involving coupled moisture and heat transfer during freezing of saturated soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(4).
    [10]LIANG Bo, ZHANG Guisheng, LIU Deren. Experimental study on thawing subsidence characters of permafrost under frost heaving and thawing circulation[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1213-1217.
  • Cited by

    Periodical cited type(2)

    1. 顾维,郭芳,郭一鹏. 基于灰色系统的深厚软基上部路堤沉降预测研究. 武汉理工大学学报(交通科学与工程版). 2024(01): 110-114 .
    2. 孙中秋,朱明,贾飞扬,徐益飞. 矩形明洞回填黄土对落石冲击响应的数值模拟研究. 现代隧道技术. 2024(06): 111-117+128 .

    Other cited types(2)

Catalog

    Article views (302) PDF downloads (105) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return