Citation: | WANG Zili, LI Jinfeng, TENG Jidong, ZHANG Sheng, SHENG Daichao. THM coupled model for simulating frost heave based on a new water film pressure criterion[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 997-1007. DOI: 10.11779/CJGE20220227 |
[1] |
TABER S. Frost heaving[J]. The Journal of Geology, 1929, 37(5): 428-461. doi: 10.1086/623637
|
[2] |
MILLER R D. Freezing and heaving of saturated and unsaturated soils[J]. Highway Research Record, 1972, 393: 1-11
|
[3] |
GILPIN R R. A model for the prediction of ice lensing and frost heave in soils[J]. Water Resources Research, 1980, 16(5): 918-930. doi: 10.1029/WR016i005p00918
|
[4] |
FOWLER A C. Secondary frost heave in freezing soils[J]. SIAM Journal on Applied Mathematics, 1989, 49(4): 991-1008. doi: 10.1137/0149060
|
[5] |
REMPEL A W, WETTLAUFER J S, WORSTER M G. Premelting dynamics in a continuum model of frost heave[J]. Journal of Fluid Mechanics, 2004, 498: 227-244. doi: 10.1017/S0022112003006761
|
[6] |
KONRAD J M, MORGENSTERN N R. A mechanistic theory of ice lens formation in fine-grained soils[J]. Canadian Geotechnical Journal, 1980, 17(4): 473-486. doi: 10.1139/t80-056
|
[7] |
HARLAN R L. Analysis of coupled heat-fluid transport in partially frozen soil[J]. Water Resources Research, 1973, 9(5): 1314-1323. doi: 10.1029/WR009i005p01314
|
[8] |
TAYLOR G S, LUTHIN J N. A model for coupled heat and moisture transfer during soil freezing[J]. Canadian Geotechnical Journal, 1978, 15(4): 548-555. doi: 10.1139/t78-058
|
[9] |
原国红. 季节冻土水分迁移的机理及数值模拟[D]. 长春: 吉林大学, 2006.
YUAN Guohong. The Mechanism and Numerical Simulation of Water Transfer in Seasonal Freezing Soil[D]. Changchun: Jilin University, 2006. (in Chinese)
|
[10] |
李智明. 冻土水热力场耦合机理研究与工程应用[D]. 哈尔滨: 哈尔滨工业大学, 2017.
LI Zhiming. Study on Mechanisum of Moisture-Heat-Stress Coupling for Frozen Soil and Engineering Application[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
|
[11] |
白青波, 李旭, 田亚护, 等. 冻土水热耦合方程及数值模拟研究[J]. 岩土工程学报, 2015, 37(增刊2): 131-136. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16270.shtml
BAI Qingbo, LI Xu, TIAN Yahu, et al. Equations and numerical simulation for coupled water and heat transfer in frozen soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S2): 131-136. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16270.shtml
|
[12] |
THOMAS H R, CLEALL P, LI Y C, et al. Modelling of cryogenic processes in permafrost and seasonally frozen soils[J]. Géotechnique, 2009, 59(3): 173-184. doi: 10.1680/geot.2009.59.3.173
|
[13] |
ZHOU J Z, LI D. Numerical analysis of coupled water, heat and stress in saturated freezing soil[J]. Cold Regions Science & Technology, 2012, 72: 43-49.
|
[14] |
HUANG X, RUDOLPH D L. Coupled model for water, vapour, heat, stress and strain fields in variably saturated freezing soils[J]. Advances in Water Resources, 2021, 154: 103945. doi: 10.1016/j.advwatres.2021.103945
|
[15] |
LAI Y M, PEI W S, ZHANG M Y, et al. Study on theory model of hydro-thermal–mechanical interaction process in saturated freezing silty soil[J]. International Journal of Heat & Mass Transfer, 2014, 78: 805-819.
|
[16] |
MING F, LI D Q. Experimental and theoretical investigations on frost heave in porous media[J]. Mathematical Problems in Engineering, 2015: 1-9.
|
[17] |
曾桂军, 张明义, 李振萍, 等. 正冻土中冰透镜体形成力学判据的分析讨论[J]. 冰川冻土, 2015, 37(1): 192-201.
ZENG Guijun, ZHANG Mingyi, LI Zhenping, et al. Review of mechanical criterion for formation office lens in freezing soil[J]. Journal of Glaciology and Geocryology, 2015, 37(1): 192-201. (in Chinese)
|
[18] |
NIXON, DERICK J. Discrete ice lens theory for frost heave in soils[J]. Canadian Geotechnical Journal, 1991, 28(6): 843-859. doi: 10.1139/t91-102
|
[19] |
TICE A R, ANDERSON D M, BANIN A. The prediction of unfrozen water contents in frozen soils from liquid limit determinations[C]// Symposium on Frost Action on Roads. Oslo, 1973.
|
[20] |
季雨坤. 冰透镜体生长机制及水热力耦合冻胀特性研究[D]. 徐州: 中国矿业大学, 2019.
JI Yu-kun. Ice Lens Growth Mechanism and Hydro-Thermal-Mechanical Coupling Research on Frost Heave[D]. Xuzhou: China University of Mining and Technology, 2019. (in Chinese)
|
[21] |
ZHOU Y, ZHOU G Q. Intermittent freezing mode to reduce frost heave in freezing soils-experiments and mechanism analysis[J]. Canadian Geotechnical Journal, 2012, 49(6): 686-693. doi: 10.1139/t2012-028
|
[22] |
SHENG D C, ZHANG S, YU Z, et al. Assessing frost susceptibility of soils using PCHeave[J]. Cold regions science and technology, 2013, 95(11): 27-38.
|
[23] |
TENG J D, LIU J L, ZHANG S, et al. Frost heave in coarse-grained soils: experimental evidence and numerical modelling[J]. Géotechnique, 2022: 1-12
|
[24] |
曹宏章. 饱和颗粒土冻结过程中的多场耦合研究[D]. 北京: 中国科学院研究生院, 2006.
CAO Hongzhang. Research on Fields Coupling in Saturated Granular Soil Freezing Process[D]. Beijing: University of Chinese Academy of Sciences, 2006. (in Chinese)
|
[25] |
TENG J D, YAN H, LIANG S, et al. Generalising the kozeny-carman equation to frozen soils[J]. Journal of Hydrology, 2020, 594: 125885.
|
[26] |
徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001.
XU Xuezu, WANG Jiacheng, ZHANG Lixin. Permafrost Physics[M]. Beijing: Science Press, 2001. (in Chinese)
|
[27] |
O'NEILL K, MILLER R D. Exploration of a rigid ice model of frost heave[J]. Water Resources Research, 1985, 21(3): 281-296.
|
[28] |
周家作. 土在冻融过程中水、热、力的相互作用研究[D]. 北京: 中国科学院研究生院, 2012.
ZHOU Jiazuo. Study on the Interaction of Water, Heat and Force in Soil during Freezing and Thawing[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2012. (in Chinese)
|
[1] | SUN Ruohan, LIU Run, WANG Xiaolei, ZHANG Huan. Effects of horizontal and three-dimensional reinforcement on frost-heaving and thawing-settlement in seasonally frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 16-21. DOI: 10.11779/CJGE2024S10025 |
[2] | Experimental study on frost heave characteristics of the PCM-clay under one-dimensional freeze-thaw[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20230837 |
[3] | LÜ Zhi-tao, XIA Cai-chu, LI Qiang, WANG Yue-song. Frost heave experiments on saturated sandstone under unidirectional freezing conditions in an open system and coupled THM frost heave model[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1435-1444. DOI: 10.11779/CJGE201908007 |
[4] | GU Qi, WANG Jia-ding, SI Dong-dong, XU Yuan-jun, CHEN-peng, LI Bin. Effect of freeze-thaw cycles on collapsibility of loess under different moisture contents[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1187-1192. DOI: 10.11779/CJGE201607004 |
[5] | BAI Qing-bo, LI Xu, TIAN Ya-hu, FANG Jian-hong. Equations and numerical simulation for coupled water and heat transfer in frozen soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 131-136. DOI: 10.11779/CJGE2015S2026 |
[6] | LI Zhuo, SHENG Jing-bao, LIU Si-hong, HE Yong-jun, LI Ya-jun. Model tests on frost heave-prevented channels using soilbags[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1455-1463. DOI: 10.11779/CJGE201408011 |
[7] | WANG Tian-liang, BU Jian-qing, WANG Yang, XU Lei, YAN Han. Thaw subsidence properties of soils under repeated freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 625-632. DOI: 10.11779/CJGE201404005 |
[8] | Separate ice frost heave model for coupled moisture and heat transfer in saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1746-1751. |
[9] | Ice lens growth process involving coupled moisture and heat transfer during freezing of saturated soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(4). |
[10] | LIANG Bo, ZHANG Guisheng, LIU Deren. Experimental study on thawing subsidence characters of permafrost under frost heaving and thawing circulation[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1213-1217. |