• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHAN Xinjie, LI Wenwei, YANG Shouhua, ZHU Qunfeng, XU Xiaolong, HUANG Huixing. Model tests on landslide dam materials improved by dynamic compaction[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 953-963. DOI: 10.11779/CJGE20220198
Citation: ZHAN Xinjie, LI Wenwei, YANG Shouhua, ZHU Qunfeng, XU Xiaolong, HUANG Huixing. Model tests on landslide dam materials improved by dynamic compaction[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 953-963. DOI: 10.11779/CJGE20220198

Model tests on landslide dam materials improved by dynamic compaction

More Information
  • Received Date: February 23, 2022
  • Available Online: May 18, 2023
  • In order to enrich the development and utilization theories of landslide dams and guide the shallow compaction reinforcement projects, based on the similarity law, the dynamic compaction model tests on landslide dam materials with different energy levels are carried out, and the development and propagation law of dynamic stress caused by dynamic compaction energy, the displacement characteristics as well as the particle breakage and reinforcement effects are analyzed by using the macro-meso-method. The test results show that with the increasing tamping times, the peak value of dynamic pressure within the effective reinforcement range of the rammer exhibits a fluctuating upward trend as a whole due to the increasing compactness of landslide dam materials and the superposition effects of particle breakage, rearrangement and filling. During the process of dynamic compaction, the energy is transferred from the surface one to the deep layer gradually. Meanwhile, the energy dissipates greatly with the depth, and the peak value of dynamic stress decreases rapidly with the depth. Due to severe weathering, obvious particle breakage is caused by the dynamic compaction. The reinforcement effects of the dynamic compaction is obvious for loose- and wide-graded landslide dam materials. The cone tip resistance of the dynamic compaction with different energy levels greatly increases, but the reinforcement effects are limited by increasing the tamping energy when it exceeds a certain value. Based on the model tests on the Yigong landslide dam materials, the best tamping energy is about 6000 kN·m.
  • [1]
    SHI Z M, XIONG X, PENG M, et al. Risk assessment and mitigation for the Hongshiyan landslide dam triggered by the 2014 Ludian earthquake in Yunnan, China[J]. Landslides, 2017, 14(1): 269-285. doi: 10.1007/s10346-016-0699-1
    [2]
    WU L Z, DENG H, HUANG R Q, et al. Evolution of lakes created by landslide dams and the role of dam erosion: a case study of the Jiajun landslide on the Dadu River, China[J]. Quaternary International, 2019, 503: 41-50. doi: 10.1016/j.quaint.2018.08.001
    [3]
    沈光泽, 盛金保, 向衍, 等. 堰塞坝漫顶溃决过程数值模拟及应用[J]. 岩土工程学报, 2018, 40(增刊2): 82-86. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2019.htm

    SHEN Guangze, SHENG Jinbao, XIANG Yan, et al. Numerical modeling of breach process of landslide dams due to overtopping and its application[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 82-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2019.htm
    [4]
    赵天龙, 陈生水, 付长静, 等. 堰塞坝泄流槽断面型式离心模型试验研究[J]. 岩土工程学报, 2017, 39(10): 1943-1948. doi: 10.11779/CJGE201710025

    ZHAO Tianlong, CHEN Shengshui, FU Changjing, et al. Centrifugal model tests on section form of drainage channel of barrier dams[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1943-1948. (in Chinese) doi: 10.11779/CJGE201710025
    [5]
    赵天龙, 陈生水, 王俊杰, 等. 堰塞坝漫顶溃坝离心模型试验研究[J]. 岩土工程学报, 2016, 38(11): 1965-1972. doi: 10.11779/CJGE201611005

    ZHAO Tianlong, CHEN Shengshui, WANG Junjie, et al. Centrifugal model tests overtopping failure of barrier dams[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1965-1972. (in Chinese) doi: 10.11779/CJGE201611005
    [6]
    何宁, 何斌, 张宗亮, 等. 蓄水初期红石岩堰塞坝混凝土防渗墙变形与受力分析[J]. 岩土工程学报, 2021, 43(6): 1125-1130. doi: 10.11779/CJGE202106016

    HE Ning, HE Bin, ZHANG Zongliang, et al. Deformation and stress of concrete cut-off wall of Hongshiyan dammed body at initial stage of water storage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1125-1130. (in Chinese) doi: 10.11779/CJGE202106016
    [7]
    张宗亮, 张天明, 杨再宏, 等. 牛栏江红石岩堰塞湖整治工程[J]. 水力发电, 2016, 42(9): 83-86. https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD201609024.htm

    ZHANG Zongliang, ZHANG Tianming, YANG Zaihong, et al. Remediation Project of hongshiyan dammed lake in niulan river[J]. Water Power, 2016, 42(9): 83-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD201609024.htm
    [8]
    何宁, 娄炎, 何斌. 堰塞体的加固与开发利用技术[J]. 中国水利, 2008(16): 26-28. doi: 10.3969/j.issn.1000-1123.2008.16.008

    HE Ning, LOU Yan, HE Bin. Technologies of dammed lake strengthen and utilization[J]. China Water Resources, 2008(16): 26-28. (in Chinese) doi: 10.3969/j.issn.1000-1123.2008.16.008
    [9]
    刘宁, 程尊兰, 崔鹏. 堰塞湖及其风险控制[M]. 北京: 科学出版社, 2013.

    LIU Ning, CHENG Zunlan, CUI Peng. Dammed Lake and Risk Management[M]. Beijing: Science Press, 2013. (in Chinese)
    [10]
    何长明, 邹金锋, 李亮. 强夯动应力的量测及现场试验研究[J]. 岩土工程学报, 2007, 29(4): 628-632. doi: 10.3321/j.issn:1000-4548.2007.04.027

    HE Changming, ZOU Jinfeng, LI Liang. Field tests on measurement of dynamic stress of dynamic compaction[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 628-632. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.04.027
    [11]
    费香泽, 王钊, 周正兵. 黄土强夯的模型试验研究[J]. 岩土力学, 2002, 23(4): 437-441. doi: 10.3969/j.issn.1000-7598.2002.04.009

    FEI Xiangze, WANG Zhao, ZHOU Zhengbing. Experimental research of dynamic compaction of loess[J]. Rock and Soil Mechanics, 2002, 23(4): 437-441. (in Chinese) doi: 10.3969/j.issn.1000-7598.2002.04.009
    [12]
    费香泽, 王钊, 周正兵. 强夯加固深度的试验研究[J]. 四川大学学报(工程科学版), 2002, 34(4): 56-59. doi: 10.3969/j.issn.1009-3087.2002.04.014

    FEI Xiangze, WANG Zhao, ZHOU Zhengbing. Model test of improvement depth of dynamic compaction[J]. Journal of Sichuan University (Engineering Science Edition), 2002, 34(4): 56-59. (in Chinese) doi: 10.3969/j.issn.1009-3087.2002.04.014
    [13]
    贾敏才, 王磊, 周健. 砂性土宏细观强夯加固机制的试验研究[J]. 岩石力学与工程学报, 2009, 28(增刊1): 3282-3290.

    JIA Mincai, WANG Lei, ZHOU Jian. Experimental research on macro-meso consolidation mechanism of sandy soil with dynamic compaction[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S1): 3282-3290. (in Chinese)
    [14]
    熊巨华, 胡斌, 冯世进, 等. 强夯法加固粉土地基室内模型试验研究[J]. 世界地震工程, 2010, 26(增刊1): 241-246. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC2010S1049.htm

    XIONG Juhua, HU Bin, FENG Shijin, et al. Model test study on silt foundation improvement by dynamic compaction[J]. World Earthquake Engineering, 2010, 26(S1): 241-246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC2010S1049.htm
    [15]
    张清峰, 王东权. 强夯法加固煤矸石地基动应力模型试验研究[J]. 岩土工程学报, 2012, 34(6): 1142-1147. http://www.cgejournal.com/cn/article/id/14617

    ZHANG Qingfeng, WANG Dongquan. Model tests on dynamic stress in colliery wastes improved by dynamic compaction[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1142-1147. (in Chinese) http://www.cgejournal.com/cn/article/id/14617
    [16]
    张清峰, 王东权. 煤矸石地基在强夯冲击荷载作用下的物理模型试验研究[J]. 岩石力学与工程学报, 2013, 32(5): 1049-1056.

    ZHANG Qingfeng, WANG Dongquan. Physical model tests of coal gangue foundation under dynamic compaction loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(5): 1049-1056. (in Chinese)
    [17]
    高政国, 杜雨龙, 黄晓波, 等. 碎石填筑场地强夯加固机制及施工工艺[J]. 岩石力学与工程学报, 2013, 32(2): 377-384.

    GAO Zhengguo, DU Yulong, HUANG Xiaobo, et al. Reinforcement mechanism and construction technology of broken stone fills by dynamic consolidation[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 377-384. (in Chinese)
    [18]
    CHEN L, QIAO L, LI Q. Study on dynamic compaction characteristics of gravelly soils with crushing effect[J]. Soil Dynamics and Earthquake Engineering, 2019, 120: 158-169.
    [19]
    中华人民共和国建设部. 土的工程分类标准: GB/T 50145—2007[S]. 北京: 中国计划出版社, 2008.

    Ministry of Construction of the People's Republic of China. Standard for Engineering Classification of Soil: GB/T 50145—2007[S]. Beijing: China Planning Press, 2008. (in Chinese)
    [20]
    中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [21]
    王家辉, 饶锡保, 江洎洧, 等. 振冲碎石桩复合地基抗剪机制的模型试验研究[J]. 岩土力学, 2021, 42(4): 1095-1103. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104022.htm

    WANG Jiahui, RAO Xibao, JIANG Jiwei, et al. Model experimental study of the shear mechanism of vibroflotation stone column composite foundation[J]. Rock and Soil Mechanics, 2021, 42(4): 1095-1103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104022.htm
    [22]
    建筑地基处理技术规范: JGJ 79—2012[S]. 北京: 中国建筑工业出版社, 2013.

    Technical Code for Ground Treatment of Buildings: JGJ 79—2012[S]. Beijing: China Construction Industry Press, 2013. (in Chinese)
    [23]
    冯世进, 胡斌, 张旭, 等. 强夯参数对夯击效果影响的室内模型试验[J]. 同济大学学报(自然科学版), 2012, 40(8): 1147-1153.

    FENG Shijin, HU Bin, ZHANG Xu, et al. Model test study on impact parameters' influence on tamping effect[J]. Journal of Tongji University (Natural Science), 2012, 40(8): 1147-1153. (in Chinese)
    [24]
    占鑫杰, 杨守华, 朱群峰, 等. 堰塞坝改良加固关键技术[R]. 南京: 南京水利科学研究院, 2021: 17-60.

    ZHAN Xinjie, YANG Shouhua, ZHU Qunfeng, et al Key Technologies for Improvement and Reinforcement of Landslide Dam[R] Nanjing: Nanjing Hydraulic Research Institute, 2021: 17-60. (in Chinese)
  • Related Articles

    [1]Experimental Study on the Influence of Formation Lateral Pressure Coefficient on the Mechanical Properties of Double-Layer Lining Structure in Shield Tunnel[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20230909
    [2]ZHONG Xiaochun, MO Nuanjiao, YU Mingxue, ZHU Weibin, ZHU Nengwen, YOU Zhi. Unit tests on shield tail brush annular sealing system and its watertightness mechanism[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 354-361. DOI: 10.11779/CJGE20211464
    [3]JIANG Ming-jie, LU Xiao-ping, ZHU Jun-gao, JI En-yue, GUO Wan-li. Method for estimating at-rest lateral pressure coefficient of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 77-81. DOI: 10.11779/CJGE2018S2016
    [4]SHI Jian-yong, ZHAO Yi. Influence of air pressure and void on permeability coefficient of air in municipal solid waste (MSW)[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 586-593. DOI: 10.11779/CJGE201504002
    [5]LI Guo-wei, HU Jian, LU Xiao-cen, ZHOU Yang. One-dimensional secondary consolidation coefficient and lateral pressure coefficient of overconsolidated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2198-2205.
    [6]JIA Ning. Coefficient of at-rest earth pressure from limited backfill[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1333-1337.
    [7]TANG Shidong, Lv Jianchun, FU Zong. Solution to initial horizontal stress and lateral earth pressure coefficient at rest by flat dilatometer tests[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2144-2148.
    [8]LIN Zheng, CHEN Renpeng, CHEN Yunmin, XU Feng. A method for in-situ testing of coefficients of consolidation and permeability of soils[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 505-510.
    [9]GAO Jiangping, YU Maohong, HU Changshun, CHEN Zhongda. Study on the distributive rule of the earth pressure and its coefficient of the reinforced earth wall[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(5): 582-584.
    [10]Peng Dapeng. Probability Analysis of Soil Pressure Coefficient[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(6): 117-122.
  • Other Related Supplements

  • Cited by

    Periodical cited type(10)

    1. 李永辉,王海,牛恒宇,蒋晓天. 砂土-钢板界面剪切试验与PFC细观模拟分析. 长江科学院院报. 2025(02): 107-114+137 .
    2. 罗余游,刘洪伟,朱鹏宇. 基于DDA方法的高填方分层碾压强夯研究. 路基工程. 2024(02): 153-158 .
    3. 冯忞,宋文捷. 含水率对残积土与土工织物界面剪切特性的影响. 华南地震. 2024(01): 157-164 .
    4. 禹克强,孙少锐,曹曜,王武超,黄佳豪,靳春林,赵博涵. 养护时间和基质含量对土石混合体力学特性的影响. 河南科学. 2024(07): 994-1002 .
    5. 吴建奇,李敏,罗翔,陈腾. 密实度对格栅-再生混凝土骨料界面剪切特性的影响. 路基工程. 2024(05): 84-90 .
    6. 石广斌,周泽凯. 土石混合体边坡力学特性及稳定性分析方法研究进展. 金属矿山. 2024(10): 202-215 .
    7. 刘旻,张斌,刘飞禹,刘文燕. 土工格栅防护下埋地管道的力学性能及变形分析. 科学技术与工程. 2024(31): 13531-13539 .
    8. 龚健,梁桓玮,王剑峰,王展宏,许海,欧孝夺,罗月静. 含石量、粗颗粒级配与细粒土性质对土石混合体剪切特性影响研究. 广西大学学报(自然科学版). 2024(06): 1244-1258 .
    9. 汤新,蒋亚龙,孙洋,吴亮秦,圣小珍,郭文杰,王建立. 基于离散元法的土石混合体力学特性数值分析. 华东交通大学学报. 2024(06): 1-10 .
    10. 崔倩. 3D土工格栅-砂界面剪切性状研究. 低温建筑技术. 2023(12): 61-65 .

    Other cited types(8)

Catalog

    Article views PDF downloads Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return