Citation: | ZHAN Xinjie, LI Wenwei, YANG Shouhua, ZHU Qunfeng, XU Xiaolong, HUANG Huixing. Model tests on landslide dam materials improved by dynamic compaction[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 953-963. DOI: 10.11779/CJGE20220198 |
[1] |
SHI Z M, XIONG X, PENG M, et al. Risk assessment and mitigation for the Hongshiyan landslide dam triggered by the 2014 Ludian earthquake in Yunnan, China[J]. Landslides, 2017, 14(1): 269-285. doi: 10.1007/s10346-016-0699-1
|
[2] |
WU L Z, DENG H, HUANG R Q, et al. Evolution of lakes created by landslide dams and the role of dam erosion: a case study of the Jiajun landslide on the Dadu River, China[J]. Quaternary International, 2019, 503: 41-50. doi: 10.1016/j.quaint.2018.08.001
|
[3] |
沈光泽, 盛金保, 向衍, 等. 堰塞坝漫顶溃决过程数值模拟及应用[J]. 岩土工程学报, 2018, 40(增刊2): 82-86. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2019.htm
SHEN Guangze, SHENG Jinbao, XIANG Yan, et al. Numerical modeling of breach process of landslide dams due to overtopping and its application[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 82-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2019.htm
|
[4] |
赵天龙, 陈生水, 付长静, 等. 堰塞坝泄流槽断面型式离心模型试验研究[J]. 岩土工程学报, 2017, 39(10): 1943-1948. doi: 10.11779/CJGE201710025
ZHAO Tianlong, CHEN Shengshui, FU Changjing, et al. Centrifugal model tests on section form of drainage channel of barrier dams[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1943-1948. (in Chinese) doi: 10.11779/CJGE201710025
|
[5] |
赵天龙, 陈生水, 王俊杰, 等. 堰塞坝漫顶溃坝离心模型试验研究[J]. 岩土工程学报, 2016, 38(11): 1965-1972. doi: 10.11779/CJGE201611005
ZHAO Tianlong, CHEN Shengshui, WANG Junjie, et al. Centrifugal model tests overtopping failure of barrier dams[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1965-1972. (in Chinese) doi: 10.11779/CJGE201611005
|
[6] |
何宁, 何斌, 张宗亮, 等. 蓄水初期红石岩堰塞坝混凝土防渗墙变形与受力分析[J]. 岩土工程学报, 2021, 43(6): 1125-1130. doi: 10.11779/CJGE202106016
HE Ning, HE Bin, ZHANG Zongliang, et al. Deformation and stress of concrete cut-off wall of Hongshiyan dammed body at initial stage of water storage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1125-1130. (in Chinese) doi: 10.11779/CJGE202106016
|
[7] |
张宗亮, 张天明, 杨再宏, 等. 牛栏江红石岩堰塞湖整治工程[J]. 水力发电, 2016, 42(9): 83-86. https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD201609024.htm
ZHANG Zongliang, ZHANG Tianming, YANG Zaihong, et al. Remediation Project of hongshiyan dammed lake in niulan river[J]. Water Power, 2016, 42(9): 83-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD201609024.htm
|
[8] |
何宁, 娄炎, 何斌. 堰塞体的加固与开发利用技术[J]. 中国水利, 2008(16): 26-28. doi: 10.3969/j.issn.1000-1123.2008.16.008
HE Ning, LOU Yan, HE Bin. Technologies of dammed lake strengthen and utilization[J]. China Water Resources, 2008(16): 26-28. (in Chinese) doi: 10.3969/j.issn.1000-1123.2008.16.008
|
[9] |
刘宁, 程尊兰, 崔鹏. 堰塞湖及其风险控制[M]. 北京: 科学出版社, 2013.
LIU Ning, CHENG Zunlan, CUI Peng. Dammed Lake and Risk Management[M]. Beijing: Science Press, 2013. (in Chinese)
|
[10] |
何长明, 邹金锋, 李亮. 强夯动应力的量测及现场试验研究[J]. 岩土工程学报, 2007, 29(4): 628-632. doi: 10.3321/j.issn:1000-4548.2007.04.027
HE Changming, ZOU Jinfeng, LI Liang. Field tests on measurement of dynamic stress of dynamic compaction[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 628-632. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.04.027
|
[11] |
费香泽, 王钊, 周正兵. 黄土强夯的模型试验研究[J]. 岩土力学, 2002, 23(4): 437-441. doi: 10.3969/j.issn.1000-7598.2002.04.009
FEI Xiangze, WANG Zhao, ZHOU Zhengbing. Experimental research of dynamic compaction of loess[J]. Rock and Soil Mechanics, 2002, 23(4): 437-441. (in Chinese) doi: 10.3969/j.issn.1000-7598.2002.04.009
|
[12] |
费香泽, 王钊, 周正兵. 强夯加固深度的试验研究[J]. 四川大学学报(工程科学版), 2002, 34(4): 56-59. doi: 10.3969/j.issn.1009-3087.2002.04.014
FEI Xiangze, WANG Zhao, ZHOU Zhengbing. Model test of improvement depth of dynamic compaction[J]. Journal of Sichuan University (Engineering Science Edition), 2002, 34(4): 56-59. (in Chinese) doi: 10.3969/j.issn.1009-3087.2002.04.014
|
[13] |
贾敏才, 王磊, 周健. 砂性土宏细观强夯加固机制的试验研究[J]. 岩石力学与工程学报, 2009, 28(增刊1): 3282-3290.
JIA Mincai, WANG Lei, ZHOU Jian. Experimental research on macro-meso consolidation mechanism of sandy soil with dynamic compaction[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S1): 3282-3290. (in Chinese)
|
[14] |
熊巨华, 胡斌, 冯世进, 等. 强夯法加固粉土地基室内模型试验研究[J]. 世界地震工程, 2010, 26(增刊1): 241-246. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC2010S1049.htm
XIONG Juhua, HU Bin, FENG Shijin, et al. Model test study on silt foundation improvement by dynamic compaction[J]. World Earthquake Engineering, 2010, 26(S1): 241-246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC2010S1049.htm
|
[15] |
张清峰, 王东权. 强夯法加固煤矸石地基动应力模型试验研究[J]. 岩土工程学报, 2012, 34(6): 1142-1147. http://www.cgejournal.com/cn/article/id/14617
ZHANG Qingfeng, WANG Dongquan. Model tests on dynamic stress in colliery wastes improved by dynamic compaction[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1142-1147. (in Chinese) http://www.cgejournal.com/cn/article/id/14617
|
[16] |
张清峰, 王东权. 煤矸石地基在强夯冲击荷载作用下的物理模型试验研究[J]. 岩石力学与工程学报, 2013, 32(5): 1049-1056.
ZHANG Qingfeng, WANG Dongquan. Physical model tests of coal gangue foundation under dynamic compaction loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(5): 1049-1056. (in Chinese)
|
[17] |
高政国, 杜雨龙, 黄晓波, 等. 碎石填筑场地强夯加固机制及施工工艺[J]. 岩石力学与工程学报, 2013, 32(2): 377-384.
GAO Zhengguo, DU Yulong, HUANG Xiaobo, et al. Reinforcement mechanism and construction technology of broken stone fills by dynamic consolidation[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 377-384. (in Chinese)
|
[18] |
CHEN L, QIAO L, LI Q. Study on dynamic compaction characteristics of gravelly soils with crushing effect[J]. Soil Dynamics and Earthquake Engineering, 2019, 120: 158-169.
|
[19] |
中华人民共和国建设部. 土的工程分类标准: GB/T 50145—2007[S]. 北京: 中国计划出版社, 2008.
Ministry of Construction of the People's Republic of China. Standard for Engineering Classification of Soil: GB/T 50145—2007[S]. Beijing: China Planning Press, 2008. (in Chinese)
|
[20] |
中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
|
[21] |
王家辉, 饶锡保, 江洎洧, 等. 振冲碎石桩复合地基抗剪机制的模型试验研究[J]. 岩土力学, 2021, 42(4): 1095-1103. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104022.htm
WANG Jiahui, RAO Xibao, JIANG Jiwei, et al. Model experimental study of the shear mechanism of vibroflotation stone column composite foundation[J]. Rock and Soil Mechanics, 2021, 42(4): 1095-1103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104022.htm
|
[22] |
建筑地基处理技术规范: JGJ 79—2012[S]. 北京: 中国建筑工业出版社, 2013.
Technical Code for Ground Treatment of Buildings: JGJ 79—2012[S]. Beijing: China Construction Industry Press, 2013. (in Chinese)
|
[23] |
冯世进, 胡斌, 张旭, 等. 强夯参数对夯击效果影响的室内模型试验[J]. 同济大学学报(自然科学版), 2012, 40(8): 1147-1153.
FENG Shijin, HU Bin, ZHANG Xu, et al. Model test study on impact parameters' influence on tamping effect[J]. Journal of Tongji University (Natural Science), 2012, 40(8): 1147-1153. (in Chinese)
|
[24] |
占鑫杰, 杨守华, 朱群峰, 等. 堰塞坝改良加固关键技术[R]. 南京: 南京水利科学研究院, 2021: 17-60.
ZHAN Xinjie, YANG Shouhua, ZHU Qunfeng, et al Key Technologies for Improvement and Reinforcement of Landslide Dam[R] Nanjing: Nanjing Hydraulic Research Institute, 2021: 17-60. (in Chinese)
|
[1] | Experimental Study on the Influence of Formation Lateral Pressure Coefficient on the Mechanical Properties of Double-Layer Lining Structure in Shield Tunnel[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20230909 |
[2] | ZHONG Xiaochun, MO Nuanjiao, YU Mingxue, ZHU Weibin, ZHU Nengwen, YOU Zhi. Unit tests on shield tail brush annular sealing system and its watertightness mechanism[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 354-361. DOI: 10.11779/CJGE20211464 |
[3] | JIANG Ming-jie, LU Xiao-ping, ZHU Jun-gao, JI En-yue, GUO Wan-li. Method for estimating at-rest lateral pressure coefficient of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 77-81. DOI: 10.11779/CJGE2018S2016 |
[4] | SHI Jian-yong, ZHAO Yi. Influence of air pressure and void on permeability coefficient of air in municipal solid waste (MSW)[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 586-593. DOI: 10.11779/CJGE201504002 |
[5] | LI Guo-wei, HU Jian, LU Xiao-cen, ZHOU Yang. One-dimensional secondary consolidation coefficient and lateral pressure coefficient of overconsolidated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2198-2205. |
[6] | JIA Ning. Coefficient of at-rest earth pressure from limited backfill[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1333-1337. |
[7] | TANG Shidong, Lv Jianchun, FU Zong. Solution to initial horizontal stress and lateral earth pressure coefficient at rest by flat dilatometer tests[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2144-2148. |
[8] | LIN Zheng, CHEN Renpeng, CHEN Yunmin, XU Feng. A method for in-situ testing of coefficients of consolidation and permeability of soils[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 505-510. |
[9] | GAO Jiangping, YU Maohong, HU Changshun, CHEN Zhongda. Study on the distributive rule of the earth pressure and its coefficient of the reinforced earth wall[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(5): 582-584. |
[10] | Peng Dapeng. Probability Analysis of Soil Pressure Coefficient[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(6): 117-122. |