• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Jin-zhang, HUANG Hong-wei, ZHANG Dong-ming, PHOON Kok-kwang, TANG Chong. Simplified methods for deformation analysis of tunnel structures considering spatial variability of soil properties[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 134-143. DOI: 10.11779/CJGE202201013
Citation: ZHANG Jin-zhang, HUANG Hong-wei, ZHANG Dong-ming, PHOON Kok-kwang, TANG Chong. Simplified methods for deformation analysis of tunnel structures considering spatial variability of soil properties[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 134-143. DOI: 10.11779/CJGE202201013

Simplified methods for deformation analysis of tunnel structures considering spatial variability of soil properties

More Information
  • Received Date: June 29, 2021
  • Available Online: September 22, 2022
  • The spatial variability of soil properties is widely accepted, and the response of a geo-structure can be significantly affected by the spatial variability of the surrounding soil mass. The random field theory is a popularly used method to simulate the spatial variability of soil properties. The stochastic analysis of horizontal convergence of tunnel is carried out using the random field difference method considering the spatial variability of Young's modulus. The random field difference method is combined with the Monte Carlo method and finite difference simulation based on random field theory. A large number of Monte Carlo simulations are adopted in the proposed random field difference method. Meanwhile, three simple and easy-to-use methods for the spatial variability of soil are proposed: reduction factor method, amplification factor method and reliability partial factor calibration method. Based on the statistical analysis of the calculated results, the suggested values of three simplified analysis methods under different combinations of the horizontal scale of fluctuation, the vertical scale of fluctuation and the coefficient of variation are given. This study may provide references for the application of spatial variability research to practical geotechnical engineering.
  • [1]
    HUANG H W, SHAO H, ZHANG D M, et al. Deformational responses of operated shield tunnel to extreme surcharge: a case study[J]. Structure and Infrastructure Engineering, 2017, 13(3): 345–360. doi: 10.1080/15732479.2016.1170156
    [2]
    HUANG H W, XIAO L, ZHANG D M, et al. Influence of spatial variability of soil Young's modulus on tunnel convergence in soft soils[J]. Engineering Geology, 2017, 228: 357–370. doi: 10.1016/j.enggeo.2017.09.011
    [3]
    PHOON K K, KULHAWY F H. Characterization of geotechnical variability[J]. Canadian Geotechnical Journal, 1999, 36(4): 612–624. doi: 10.1139/t99-038
    [4]
    ZHANG J Z, HUANG H W, ZHANG D M, et al. Quantitative evaluation of geological uncertainty and its influence on tunnel structural performance using improved coupled Markov chain[J]. Acta Geotechnica, 2021, 16: 3709–3724. doi: 10.1007/s11440-021-01287-6
    [5]
    陶袁钦, 孙宏磊, 蔡袁强. 考虑约束的贝叶斯概率反演方法[J]. 岩土工程学报, 2021, 43(1): 1878–1886. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202110016.htm

    TAO Yuan-qin, SUN Hong-lei, CAI Yuan-qiang. Bayesian back analysis considering constraints[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 43(1): 1878–1886. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202110016.htm
    [6]
    ZHANG W G, HAN L, GU X, et al. Tunneling and deep excavations in spatially variable soil and rock masses: a short review[J/OL]. Underground Space, 2020: [2020-12-07]. http://doi. org/10.1016/j. undsp. 2020.03. 003.
    [7]
    VANMARCKE E H. Probabilistic modeling of soil profiles[J]. Journal of the Geotechnical Engineering Division, 1977, 103(11): 1227–1246. doi: 10.1061/AJGEB6.0000517
    [8]
    LI D Q, JIANG S H, CAO Z J, et al. A multiple response-surface method for slope reliability analysis considering spatial variability of soil properties[J]. Engineering Geology, 2015, 187: 60–72. doi: 10.1016/j.enggeo.2014.12.003
    [9]
    蒋水华, 刘贤, 黄发明, 等. 考虑多参数空间变异性的降雨入渗边坡失稳机理及可靠度分析[J]. 岩土工程学报, 2020, 42(5): 900–907. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005017.htm

    JIANG Shui-hua, LIU Xian, HUANG Fa-ming, et al. Failure mechanism and reliability analysis of soil slopes under rainfall infiltration considering spatial variability of multiple soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 900–907. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005017.htm
    [10]
    CHING J, HU Y G, PHOON K K. Effective Young's modulus of a spatially variable soil mass under a footing[J]. Structural Safety, 2018, 73: 99–113. doi: 10.1016/j.strusafe.2018.03.004
    [11]
    LI J H, ZHOU Y, ZHANG L L, et al. Random finite element method for spudcan foundations in spatially variable soils[J]. Engineering Geology, 2016, 205: 146–155. doi: 10.1016/j.enggeo.2015.12.019
    [12]
    LUO Z, LI Y X, ZHOU S H, et al. Effects of vertical spatial variability on supported excavations in sands considering multiple geotechnical and structural failure modes[J]. Computers and Geotechnics, 2018, 95: 16–29. doi: 10.1016/j.compgeo.2017.11.017
    [13]
    CHEN F Y, WANG L, ZHANG W G. Reliability assessment on stability of tunnelling perpendicularly beneath an existing tunnel considering spatial variabilities of rock mass properties[J]. Tunnelling and Underground Space Technology, 2019, 88: 276–289. doi: 10.1016/j.tust.2019.03.013
    [14]
    ZHANG J Z, HUANG H W, ZHANG D M, et al. Effect of ground surface surcharge on deformational performance of tunnel in spatially variable soil[J]. Computers and Geotechnics, 2021, 136: 104229. doi: 10.1016/j.compgeo.2021.104229
    [15]
    程红战, 陈健, 胡之锋, 等. 考虑参数空间变异性的隧道下穿建筑物安全性评价[J]. 岩土工程学报, 2017, 39(增刊2): 75–78. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S2020.htm

    CHENG Hong-zhan, CHEN Jian, HU Zhi-feng, et al. Evaluation of safety of buildings above tunnels accounting for spatial variability of soil properties[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S2): 75–78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S2020.htm
    [16]
    王长虹, 朱合华, 徐子川, 等. 考虑岩土参数空间变异性的盾构隧道地表沉降分析[J]. 岩土工程学报, 2018, 40(2): 270–277. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802008.htm

    WANG Chang-hong, ZHU He-hua, XU Zi-chuan, et al. Ground surface settlement of shield tunnels considering spatial variability of multiple geotechnical parameters[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 270–277. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802008.htm
    [17]
    谭晓慧, 董小乐, 费锁柱, 等. 基于KL展开的可靠度分析方法及其应用[J]. 岩土工程学报, 2020, 42(5): 808–816. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005005.htm

    TAN Xiao-hui, DONG Xiao-le, FEI Suo-zhu, et al. Reliability analysis method based on KL expansion and its application[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 808–816. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005005.htm
    [18]
    CHING J, HU Y G. Effect of element size in random finite element analysis for effective Young's modulus[J]. Mathematical Problems in Engineering, 2016, 2016: 1–10.
    [19]
    ZHANG D M, LIU Z S, WANG R L, et al. Influence of grouting on rehabilitation of an over-deformed operating shield tunnel lining in soft clay[J]. Acta Geotechnica, 2019, 14(4): 1227–1247. doi: 10.1007/s11440-018-0696-8
    [20]
    GONG W P, LUO Z, JUANG C H, et al. Optimization of site exploration program for improved prediction of tunneling-induced ground settlement in clays[J]. Computers and Geotechnics, 2014, 56: 69–79. doi: 10.1016/j.compgeo.2013.10.008
    [21]
    JIN D L, SHEN Z C, YUAN D J. Effect of spatial variability on disc cutters failure during TBM tunneling in hard rock[J]. Rock Mechanics and Rock Engineering, 2020, 53(10): 4609–4621. doi: 10.1007/s00603-020-02192-2
    [22]
    HUANG Z K, PITILAKIS K, TSINIDIS G, et al. Seismic vulnerability of circular tunnels in soft soil deposits: The case of Shanghai metropolitan system[J]. Tunnelling and Underground Space Technology, 2020, 98: 103341. doi: 10.1016/j.tust.2020.103341
    [23]
    邵华. 上海地铁盾构隧道变形机理及无线传感方法研究[D]. 上海: 同济大学, 2018.

    SHAO Hua. Analysis of Deformation Mechanism and Wireless Sensing Method of Shield Tunnel for Shanghai Metro[D]. Shanghai: Tongji University, 2018. (in Chinese)
  • Cited by

    Periodical cited type(8)

    1. 王才进,武猛,杨洋,何欢,蔡国军,刘薛宁,刘松玉. 基于CPTU测试的高速公路扩建地基软土参数空间变异性研究. 中国公路学报. 2024(02): 197-208 .
    2. 王新龙,聂利青,蔡国军,张宁,赵泽宁,刘薛宁,宋登辉. 基于孔压静力触探技术的SVR优化算法评估土体液性指数. 岩土力学. 2024(S1): 645-653 .
    3. 周瑞荣,李浩,肖兴,周逸枫,吴琪. 长江漫滩相超固结软土最大动剪切模量试验研究. 震灾防御技术. 2024(03): 478-485 .
    4. 加瑞,赵栋,雷华阳. 黏土结构性对孔压静力触探结果的影响分析. 水文地质工程地质. 2023(05): 80-88 .
    5. 赵学亮,徐春喆,郭鹏,李宇,张友虎,陈亮. 基于CPTU的黏性土超固结比计算方法的对比分析. 东南大学学报(自然科学版). 2023(06): 1044-1052 .
    6. 王钰轲,冯爽,钟燕辉,张蓓. 基于集成学习模型的正常固结土抗剪强度指标预测方法. 岩土工程学报. 2023(S2): 183-188 . 本站查看
    7. 赵泽宁,段伟,蔡国军,刘松玉,常建新,冯华磊. 基于机器学习CPTU智能算法的黏性土应力历史评价. 岩土工程学报. 2021(S2): 104-107 . 本站查看
    8. 赵俊杰. 基于数据融合技术的液压支架故障诊断专家系统设计. 自动化应用. 2019(11): 65-66 .

    Other cited types(2)

Catalog

    Article views (307) PDF downloads (185) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return