• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Yong-li, DONG Zi-jian, ZHOU Ji-sen, TAN Hong-liang, ZHOU Jian-hang. Dynamic parameters of lime-improved saline soil under freeze-thaw and different temperatures[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 90-97. DOI: 10.11779/CJGE202201008
Citation: XU Yong-li, DONG Zi-jian, ZHOU Ji-sen, TAN Hong-liang, ZHOU Jian-hang. Dynamic parameters of lime-improved saline soil under freeze-thaw and different temperatures[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 90-97. DOI: 10.11779/CJGE202201008

Dynamic parameters of lime-improved saline soil under freeze-thaw and different temperatures

More Information
  • Received Date: June 10, 2021
  • Available Online: September 22, 2022
  • In order to study the stability of lime-improved saline soil roadbed in seasonal freezing areas, laboratory tests are conducted to analyze the change of the dynamic parameters under freeze-thaw and low-temperature environments. The British GDS dynamic triaxial test system (GDSTAS) is adopted to measure the dynamic shear modulus and damping ratio of lime-improved saline soil under different dynamic load frequencies, confining pressures, temperatures and numbers of freeze-thaw cycles. The results show that the dynamic shear modulus at the turning point can reflect the changing trend of the dynamic shear modulus of the sample. The decrease in temperature, the increase in frequency and the increase in confining pressure can increase the dynamic shear modulus and decrease the damping ratio of the sample. The temperature has a more significant impact on the dynamic characteristics. When the number of freeze-thaw cycles increases, the dynamic shear modulus and the damping ratio increase. The temperature correction coefficient and freeze-thaw correction coefficient are proposed to correct the dynamic shear modulus and damping ratio, and the curve fitting is performed. The fitting curve shows that the turning points of the correction coefficient are at -6℃ and the three freeze-thaw cycles respectively. On this basis, a dynamic parameter prediction model is proposed as reference for the stability design of lime-improved saline soil roadbed.
  • [1]
    JING R X, ZHANG F, FENG D C, et al. Dynamic shear modulus and damping ratio of compacted silty clay subjected to freeze–thaw cycles[J]. Journal of Materials in Civil Engineering, 2019, 31(10): 04019244. doi: 10.1061/(ASCE)MT.1943-5533.0002893
    [2]
    周凤玺, 周立增, 王立业, 等. 温度梯度作用下非饱和盐渍土水盐迁移及变形特性研究[J]. 岩石力学与工程学报, 2020, 39(10): 2115–2130. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202010015.htm

    ZHOU Feng-xi, ZHOU Li-zeng, WANG Li-ye, et al. Study on water and salt migration and deformation properties of unsaturated saline soil under temperature gradient[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(10): 2115–2130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202010015.htm
    [3]
    张宏, 闫晓辉, 王中翰, 等. 压实风积沙土层盐分迁移规律研究[J]. 岩土工程学报, 2019, 41(4): 741–747. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904023.htm

    ZHANG Hong, YAN Xiao-hui, WANG Zhong-han, et al. Migration law of salt in compacted aeolian sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 741–747. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904023.htm
    [4]
    牛丽思, 张爱军, 王毓国, 等. NaCl含量对伊犁原状黄土湿陷和溶陷特性的影响[J]. 岩土工程学报, 2020, 42(增刊2): 67–71. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S2012.htm

    NIU Li-si, ZHANG Ai-jun, WANG Yu-guo, et al. Effects of Na Cl content on water collapsibility and salt collapsibility of undisturbed Ili loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 67–71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S2012.htm
    [5]
    张锐, 刘海洋, 张宏. 风积沙填筑路基土基质吸力影响因子分析[J]. 公路, 2021, 66(3): 47–53. doi: 10.3969/j.issn.1007-0109.2021.03.011

    ZHANG Rui, LIU Hai-yang, ZHANG Hong. Analysis on influence factors of matric suction of aeolian sand filled subgrade soil[J]. Highway, 2021, 66(3): 47–53. (in Chinese) doi: 10.3969/j.issn.1007-0109.2021.03.011
    [6]
    杨晓华, 张莎莎, 刘伟, 等. 粗颗粒盐渍土工程特性研究进展[J]. 交通运输工程学报, 2020, 20(5): 22–40. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202005006.htm

    YANG Xiao-hua, ZHANG Sha-sha, LIU Wei, et al. Research progress on engineering properties of coarse-grained saline soil[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 22–40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202005006.htm
    [7]
    杨爱武, 杨少朋, 郎瑞卿, 等. 轻质固化盐渍土三维力学特性研究[J]. 岩土力学, 2021, 42(3): 593–600. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103001.htm

    YANG Ai-wu, YANG Shao-peng, LANG Rui-qing, et al. Three-dimensional mechanical properties of light solidified saline soil[J]. Rock and Soil Mechanics, 2021, 42(3): 593–600. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103001.htm
    [8]
    朱燕, 甑祥, 余湘娟, 等. 高分子材料固化盐渍土的强度试验研究[J]. 公路, 2020, 65(5): 265–271. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202005053.htm

    ZHU Yan, ZENG Xiang, YU Xiang-juan, et al. Experimental study on the strength of polymer materials solidified saline soil[J]. Highway, 2020, 65(5): 265–271. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202005053.htm
    [9]
    柳艳华, 张宏, 齐文廷. 石灰改良滨海氯盐渍土的室内试验研究[J]. 建筑材料学报, 2011, 14(2): 217–221. doi: 10.3969/j.issn.1007-9629.2011.02.014

    LIU Yan-hua, ZHANG Hong, QI Wen-ting. Treatment of coastal chloride saline soil by lime addition[J]. Journal of Building Materials, 2011, 14(2): 217–221. (in Chinese) doi: 10.3969/j.issn.1007-9629.2011.02.014
    [10]
    应赛, 周凤玺, 文桃, 等. 盐渍土冻结过程中的特征温度研究[J]. 岩土工程学报, 2021, 43(1): 53–61. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202101009.htm

    YING Sai, ZHOU Feng-xi, WEN Tao, et al. Characteristic temperatures of saline soil during freezing[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 53–61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202101009.htm
    [11]
    赵福堂, 常立君, 张吾渝. 温度变化条件下路基盐渍土动应力–动应变响应规律研究[J]. 铁道标准设计, 2019, 63(5): 54–59. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201905012.htm

    ZHAO Fu-tang, CHANG Li-jun, ZHANG Wu-yu. Study on the dynamic stress-strain response of subgrade saline soil under temperature change condition[J]. Railway Standard Design, 2019, 63(5): 54–59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201905012.htm
    [12]
    张锋. 深季节冻土区重载汽车荷载下路基动力响应与永久变形[D]. 哈尔滨: 哈尔滨工业大学, 2012.

    ZHANG Feng. Dynamic Response and Permanent Deformation of Subgrade Induced by Heavy Truck Load in Deep Seasonally Frozen Region[D]. Harbin: Harbin Institute of Technology, 2012. (in Chinese)
    [13]
    张仰鹏. 季冻区油页岩废渣路基填土动力特性及变形特征研究[D]. 长春: 吉林大学, 2019.

    ZHANG Yang-peng. Research on Dynamic Properties and Deformation Characteristics of Subgrade Filling Modified by Oil Shale Wastes in Seasonally Frozen Area[D]. Changchun: Jilin University, 2019. (in Chinese)
    [14]
    SUN J, GONG M S, TAO X X. Dynamic shear modulus of undisturbed soil under different consolidation ratios and its effects on surface ground motion[J]. Earthquake Engineering and Engineering Vibration, 2013, 12(4): 561–568. doi: 10.1007/s11803-013-0197-6
    [15]
    LIN B, ZHANG F, FENG D C, et al. Dynamic shear modulus and damping ratio of thawed saturated clay under long-term cyclic loading[J]. Cold Regions Science and Technology, 2018, 145: 93–105. doi: 10.1016/j.coldregions.2017.10.003
    [16]
    HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: design equations and curves[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(7): 667–692. doi: 10.1061/JSFEAQ.0001760
    [17]
    HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: measurement and parameter effects (Terzaghi Lecture)[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(6): 603–624. doi: 10.1061/JSFEAQ.0001756
    [18]
    YU X B, LIU H B, SUN R, et al. Improved Hardin-Drnevich model for the dynamic modulus and damping ratio of frozen soil[J]. Cold Regions Science and Technology, 2018, 153: 64–77. doi: 10.1016/j.coldregions.2018.05.004
    [19]
    严晗, 王天亮, 刘建坤, 等. 反复冻融条件下粉砂土动力学参数试验研究[J]. 岩土力学, 2014, 35(3): 683–688. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403012.htm

    YAN Han, WANG Tian-liang, LIU Jian-kun, et al. Experimental study of dynamic parameters of silty soil subjected to repeated freeze-thaw[J]. Rock and Soil Mechanics, 2014, 35(3): 683–688. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403012.htm
    [20]
    张向东, 任昆, 刘家顺. 不同冻结条件下辽西风积砂土动力参数试验研究[J]. 冰川冻土, 2020, 42(4): 1229–1237. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202004014.htm

    ZHANG Xiang-dong, REN Kun, LIU Jia-shun. Experimental study on dynamic parameters of aeolian sand in western Liaoning Province under different freezing conditions[J]. Journal of Glaciology and Geocryology, 2020, 42(4): 1229–1237. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202004014.htm
  • Related Articles

    [1]LIU Yadong, LIU Xian, LI Xueyou, YANG Zhiyong. Adaptive reliability analysis of spatially variable soil slopes using strength reduction sampling and Gaussian process regression[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 978-987. DOI: 10.11779/CJGE20230065
    [2]Study on the proportional coefficient m of horizontal subgrade reaction for Shanghai clayey soils and engineering verification[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240012
    [3]XU Si-fa, ZHOU Qi-hui, ZHENG Wen-hao, ZHU Yong-qiang, WANG Zhe. Influences of construction of foundation pits on deformation of adjacent operating tunnels in whole process based on monitoring data[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 804-812. DOI: 10.11779/CJGE202105003
    [4]ZENG Hao, TANG Chao-sheng, LIU Chang-Li, LIN Luan, XU Jin-Jian, WANG Dong-wei, SHI Bin. Measurement and analysis of shrinkage stress of expansive soils during drying process[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 717-725. DOI: 10.11779/CJGE201904015
    [5]WANG Chun-Bo, DING Wen-qi, TIAN Jiao, TANG Zhi-cheng. Coefficient of horizontal sub-grade reaction considering rheological properties of soft soils in Wuxi region[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 607-611.
    [6]SU Guo-shao, XIAO Yi-long. Gaussian process method for slope reliability analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 916.
    [7]CHENG Weishuai, LIU Dan. Impact analysis of reservoir retirement:macro-processes and final effects[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1765-1770.
    [8]YING Hongwei, GUO Yue. 3D analysis on a deep beam-slab braced foundation pit considering effect of construction process[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1670-1675.
    [9]YANG Tianhong, TAN Chunan, ZHU Wancheng, FENG Qiyan. Coupling analysis of seepage and stresses in rock failure process[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 489-493.
    [10]Ran Qiquan, Gu Xiaoyun. Coupling analysis of multiphase flow and stress for oil reservoir[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(2): 69-73.
  • Cited by

    Periodical cited type(8)

    1. 伊正男,张树光,漆文浩,范明卓,孙晔. 酸性溶液侵蚀红层软岩流固耦合蠕变特性分析. 矿业研究与开发. 2025(02): 171-183 .
    2. 梁艳玲,霍润科,宋战平,穆彦虎,秋添,宋子羿. 基于矿物溶解理论的砂岩化学损伤动态模型. 材料导报. 2024(08): 163-169 .
    3. 孟津竹,陈四利,王军祥,张靖宇. 碳酸盐岩溶蚀效应及力学特性. 沈阳工业大学学报. 2024(03): 353-360 .
    4. CHEN Bowen,LI Qi,TAN Yongsheng,Ishrat Hameed ALVI. Dissolution and Deformation Characteristics of Limestones Containing Different Calcite and Dolomite Content Induced by CO_2-Water-Rock Interaction. Acta Geologica Sinica(English Edition). 2023(03): 956-971 .
    5. 张研,王峻峰,付闵洁,叶玉龙. 酸性干湿循环灰岩单轴压缩细观劣化三维离散元分析. 金属矿山. 2023(12): 42-49 .
    6. 田洪义,王华,司景钊. 酸性溶液对花岗岩力学特性及微观结构的影响. 隧道建设(中英文). 2022(01): 57-65 .
    7. 陈传平. 灰岩三轴循环力学特性及能量演化特征试验研究. 石家庄铁道大学学报(自然科学版). 2022(02): 67-73 .
    8. 胡维. 酸性环境下灰岩水岩作用阶段判定及依据. 山西建筑. 2022(23): 72-75 .

    Other cited types(19)

Catalog

    Article views (281) PDF downloads (148) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return