• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
PU Ju-yi, LIU Bo. Control effects of soil reinforcement on underlying metro tunnel deformation and influenced zone induced by deep excavation in soft strata[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 146-149. DOI: 10.11779/CJGE2021S2035
Citation: PU Ju-yi, LIU Bo. Control effects of soil reinforcement on underlying metro tunnel deformation and influenced zone induced by deep excavation in soft strata[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 146-149. DOI: 10.11779/CJGE2021S2035

Control effects of soil reinforcement on underlying metro tunnel deformation and influenced zone induced by deep excavation in soft strata

More Information
  • Received Date: August 15, 2021
  • Available Online: December 05, 2022
  • The commonly used soil reinforcement method is selected, and the finite element numerical method is used to study the influences of soil reinforcement in the pit on the deformation characteristics of the underlying metro tunnels caused by excavation. By defining the index of deformation control efficiency, the tunnel deformation control effect is characterized, and considering the deformation control effect and engineering economy together, the suggested scheme for soil reinforcement form and strength in the pit is given. Then, by using the above scheme, the control effect of soil reinforcement on the influenced zone induced by excavation is studied. There sults indicate that the control effect of the overall reinforcement is better than the strip-shaped reinforcement and the skirt-border reinforcement on the plane, and vertically the effect of layered reinforcement is better than the mixed reinforcement and the plate-type reinforcement. The tunnel deformation control efficiency increases non-linearly with the strength of reinforced soil, and there exists an optimal value for reinforced soil strength. After the soil in the pit is reinforced using the suggested overall reinforcement on the plane and the mixed reinforcement vertically (the reinforced soil strength below the base slab is 2.0 MPa, and that above the base slab is 0.5 MPa), the heave deformation of the underlying tunnel is significantly reduced, the distribution characteristics of the tunnel heave and the mode of influenced zone are changed, and the scope of the influenced zone is reduced.
  • [1]
    城市轨道交通工程监测技术规范:GB 50911—2013[S]. 2014.

    Code for Monitoring Measurement of Urban Rail Transit Engineering: GB 50911—2013[S]. 2014. (in Chinese)
    [2]
    丁勇春. 软土地区深基坑施工引起的变形及控制研究[D]. 上海: 上海交通大学, 2009.

    DING Yong-chun. Excavation- induced Deformation and Control in Soft Deposits[D]. Shanghai: Shanghai Jiao Tong University, 2009. (in Chinese)
    [3]
    郑刚, 杜一鸣, 刁钰, 等. 基坑开挖引起邻近既有隧道变形的影响区研究[J]. 岩土工程学报, 2016, 38(4): 599-612. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604004.htm

    ZHENG Gang, DU Yi-ming, DIAO Yu, et al. Influenced zones for deformation of existing tunnels adjacent to excavations[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 599-612. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604004.htm
    [4]
    刘波. 软弱地层中基坑开挖卸荷引起临近既有地铁盾构隧道变形及控制方法研究[D]. 南京: 东南大学, 2020: 147-148.

    LIU Bo. Deformation and Its Control of Existing Shield Tunnel Induced by Unloading of Adjacent Foundation Pit Excavation in Weak Stratum[D]. Nanjing: Southeast University, 2020: 147-148. (in Chinese)
    [5]
    城市轨道交通结构安全保护技术规范:CJJ/T 202—2013[S]. 2014.

    Technical Code for Protection Structures of Urban Rail Transit: CJJ/T 202—2013[S]. 2014. (in Chinese)
  • Related Articles

    [1]LIU Bo, FAN Xue-hui, WANG Yuan-yuan, ZHANG Jia-bao, FAN Zhi-bo. Influences of excavation on adjacent existing metro tunnels: a review[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 253-258. DOI: 10.11779/CJGE2021S2060
    [2]FAN Xue-hui, LIU Bo, WANG Yuan-yuan, ZHANG Jia-bao, FAN Zhi-bo, ZHANG Ding-wen. Influenced zones for deformation of underlying metro tunnels induced by braced deep excavation in soft strata[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 217-220. DOI: 10.11779/CJGE2021S2051
    [3]LIANG Fa-yun, YUAN Qiang, LI Jia-ping, ZHANG Shao-xia. Influences of soil characteristics on longitudinal deformation of shield tunnels induced by surface surcharge[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 63-71. DOI: 10.11779/CJGE202001007
    [4]LI Jian-he, SHENG Qian, ZHU Ze-qi, LIU Shi-wei, CHENG Hong-zhan, ZHOU Xin-tao. Excavation damage zone depth and influence factors of brittle rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 190-197. DOI: 10.11779/CJGE2016S2031
    [5]ZHENG Gang, DU Yi-ming, DIAO Yu, DENG Xu, ZHU Gan-ping, ZHANG Li-ming. Influenced zones for deformation of existing tunnels adjacent to excavations[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 599-612. DOI: 10.11779/CJGE201604003
    [6]ZHENG Gang, WANG Qi, DENG Xu, DU Yi-ming. Comparative analysis of influences of different deformation modes of retaining structures on deformation of existing tunnels outside excavations[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1181-1194. DOI: 10.11779/CJGE201507003
    [7]MA Hai-long. Influence of excavation passive zone reinforcement on bracings[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 573-578.
    [8]LIU Yi, LI Jing-pei, CHEN Wei. Effect of reinforcement of deep mixing piles on deformation of ultra-deep excavations in passive zone[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 465-469.
    [9]MA Yun, QU Ruo-feng, ZHOU Xin-tao, XU Guang-li, LONG Xiong-hua, LI shou-zhi. Effects of reinforcement parameters in passive zone of excavations on lateral deformation of supporting structures[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 190-196.
    [10]Influence of deep excavation on deformation of operating metro tunnels and countermeasures[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3).
  • Cited by

    Periodical cited type(15)

    1. 劳冰峰. 浅埋暗挖通道小间距下穿管线施工方法研究. 科技与创新. 2025(02): 38-41 .
    2. 赵明春,李树光,李锁在,焦石,王飞宇. 地铁超大断面始发井地层大变形加固技术研究. 山西建筑. 2024(02): 69-72 .
    3. 王晓明,高智鑫,吕品,程李. 紧邻地铁深基坑开挖变形控制研究. 建筑机械化. 2024(01): 80-83+96 .
    4. 吉文,杨旭. 软土地区深大基坑施工对过江地铁隧道的影响. 水利规划与设计. 2024(02): 132-135 .
    5. 武冲. 不同控制措施下卸荷引起的下卧隧道隆起规律. 四川建材. 2024(04): 76-80 .
    6. 杨宁. 软弱土层中联络通道冻结工程温度场实测研究. 现代交通技术. 2024(06): 70-75 .
    7. 贺旭. 软弱地层基坑开挖支护方案比选研究. 铁道建筑技术. 2023(05): 100-104+125 .
    8. 张俊龙. 顶进工作坑开挖对下方隧道影响分析. 建材技术与应用. 2023(04): 43-46 .
    9. 刘袁振,黎庆,李长春,刘凯,朱利明. 基于强度折减法的基坑土体加固归一化模型. 工业建筑. 2023(S1): 525-527 .
    10. 黄旭辉,张有桔. 基坑分区开挖对既有隧道竖向变形控制分析. 洛阳理工学院学报(自然科学版). 2023(03): 34-39 .
    11. 王强,史方振,王潇. 主动区土体加固对深基坑变形及周边环境的影响. 安徽理工大学学报(自然科学版). 2023(05): 49-55 .
    12. 王燕,张飞. 坑底土体加固对深厚淤泥质土地铁深基坑安全的影响. 青岛理工大学学报. 2023(06): 60-66 .
    13. 李更召,陈涛,纪海东,张敏,卢川. 中穿基坑运营地铁结构变形控制措施研究. 低温建筑技术. 2022(08): 136-141 .
    14. 王丽萍. 水平间距对涉水隧道土体变形影响的模拟分析. 黑龙江水利科技. 2022(08): 74-76+108 .
    15. 冯文刚. 涉水隧道开挖对土体沉降影响分析. 黑龙江水利科技. 2022(08): 89-92 .

    Other cited types(7)

Catalog

    Article views (190) PDF downloads (213) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return