• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHENG Gang, WANG Qi, DENG Xu, DU Yi-ming. Comparative analysis of influences of different deformation modes of retaining structures on deformation of existing tunnels outside excavations[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1181-1194. DOI: 10.11779/CJGE201507003
Citation: ZHENG Gang, WANG Qi, DENG Xu, DU Yi-ming. Comparative analysis of influences of different deformation modes of retaining structures on deformation of existing tunnels outside excavations[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1181-1194. DOI: 10.11779/CJGE201507003

Comparative analysis of influences of different deformation modes of retaining structures on deformation of existing tunnels outside excavations

More Information
  • Received Date: June 03, 2014
  • Published Date: July 19, 2015
  • As more and more subways have been constructed and put into operation, control of the influences of the adjacent excavation on the existing tunnels becomes more and more important. Both the deformation characteristics of the existing tunnels at different locations and the influenced range of displacement caused by four deformation modes of retaining structures are analyzed through FEM modeling. The results show that under the situations of different deformation modes of retaining structures with the same maximal horizontal displacement, the deformations of the existing tunnels outside the excavations can be considerably different. According to the vertical deformation characteristics of the vault and invert of the tunnel, the soil layer outside the excavation can be divided into three zones, i.e., settlement zone, transition zone and heave zone. The effect zone on the deformation of the existing tunnel caused by the cantilever deformation of retaining structures is the smallest; for the convex and composite deformation modes, the ranges are similar and their distribution is larger than that of the cantilever deformation mode; the influenced range caused by the kick-in deformation mode is the largest among these four modes. In practice, besides controlling the maximum horizontal displacements of the retaining structures, the deformation mode of the retaining structures should also be optimized according to the surrounding environment, and the kick-in deformation of the retaining structures should be avoided.
  • [1]
    CHANG C T, SUN C W, DUANN S W, et al. Response of a Taipei rapid transit system (TRTS) tunnel to adjacent excavation[J]. Tunnelling and Underground Space Technology, 2001, 16(3): 151-158.
    [2]
    HWANG R N, DUANN S W, CHENG K H, et al. Damages to metro tunnels due to adjacent Excavations[C]// Proceeding of TC302 Symposium Osaka 2011: International Symposium on Backwards Problem in Geotechnical Engineering and Monitoring of Geo-Construction. Osaka, 2011: 83-88.
    [3]
    蒋洪胜, 侯学渊. 基坑开挖对临近软土地铁隧道的影响[J]. 工业建筑, 2002, 32(5): 53-56. (JIANG Hong-sheng, HOU Xue-yuan. The influence of deep excavation on adjacent metro tunnel in soft ground[J]. Industrial Construction, 2003, 32(5): 53-56. (in Chinese))
    [4]
    况龙川. 深基坑施工对地铁隧道的影响[J]. 岩土工程学报, 2000, 22(3): 284-288. (KUANG Long-chuan. Influence of construction of deep foundation pit on tunnels of metro[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(3): 284-288. (in Chinese))
    [5]
    刘庭金. 深基坑施工对地铁盾构隧道的影响分析[J]. 现代隧道技术, 2008(增刊1): 216-220. (LIU Ting-jin. Study on shield-bored metro tunnel deformation due to deep foundation pit construction[J]. Modern Tunnelling Technology, 2008(S1): 216-220. (in Chinese))
    [6]
    袁 静, 刘兴旺, 陈卫林. 杭州粉砂土地基深基坑施工对邻近地铁隧道、车站的影响研究[J]. 岩土工程学报, 2012, 34(增刊): 398-403. (YUAN Jing, LIU Xing-wang, CHEN Wei-lin. Effect of construction of deep excavation in Hangzhou silty sand on adjacent metro tunnels and stations[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(S0): 398-403. (in Chinese))
    [7]
    李进军, 王卫东. 紧邻地铁区间隧道深基坑工程的设计和实践[J]. 铁道工程学报, 2011(11): 104-111. (LI Jin-jun, WANG Wei-dong. Design and construction of deep excavation engineering adjacent to the subway tunnel[J]. Journal of Railway Engineering Society, 2011(11): 104-111. (in Chinese))
    [8]
    杨德春, 刘建国. 地铁隧道附近软土深基坑设计与施工关键技术分析[J]. 建筑结构, 2012, 42(7): 109-114. (YANG De-chun, LIU Jian-guo. Key technology analysis of soft soil deep foundation pit design and construction near the subway tunnel[J]. Building Structure, 2012, 42(7): 109-114. (in Chinese))
    [9]
    王卫东, 沈 健, 翁其平, 等. 基坑工程对邻近地铁隧道影响的分析与对策[J]. 岩土工程学报, 2006, 28(增刊): 1340-1345. (WANG Wei-dong, SHEN Jian, WENG Qi-ping, et al. Analysis and countermeasures of influence of excavation on adjacent tunnels[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(S0): 1340-1345. (in Chinese))
    [10]
    龚晓南, 高有潮. 深基坑工程施工设计手册[M]. 北京: 中国建筑工业出版社 , 1998.(GONG Xiao-nan, GAO You-chao. Construction and design manual of deep excavation engineering[M]. Beijing: China Architecture and Building Press, 1998. (in Chinese))
    [11]
    刘国彬, 王卫东. 基坑工程手册[M]. 2版. 北京: 中国建筑工业出版社, 2009.(LIU Guo-bin, WANG Wei-dong. Excavation engineering manual[M]. 2nd ed. Beijing: China Architecture and Building Press, 2009. (in Chinese))
    [12]
    郑 刚, 邓 旭, 刘 畅, 等. 不同围护结构变形模式对坑外深层土体位移场影响的对比分析[J]. 岩土工程学报, 2014, 36(2): 273-285. (ZHENG Gang, DENG Xu, LIU Chang, et al. Comparative analysis of influences of different deformation modes of retaining structures on displacement field of deep soils outside excavations[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 273-285. (in Chinese))
    [13]
    JGJ 120—2012 建筑基坑支护技术规程[S]. 2012. (JGJ 120—2012 Technical specification for retaining and protection of building foundation excavations[S]. 2012. (in Chinese))
    [14]
    YB 9258—97 建筑基坑工程技术规范[S]. 1998. (YB 9258—97 Code for technique of building foundation pit engineering[S]. 1998. (in Chinese))
    [15]
    郑 刚, 李志伟. 不同围护结构变形形式的基坑开挖对邻近建筑物的影响对比分析[J]. 岩土工程学报, 2012, 34(6): 969-977. (ZHENG Gang, LI Zhi-wei. Comparative analysis of responses of buildings adjacent to excavations with different deformation modes of retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 969-977. (in Chinese))
    [16]
    VUCETIC M, DOBRY R. Effect of soil plasticity on cyclic response[J]. Journal of Geoenvironmental Engineering, 1991, 171(1): 89-107.
    [17]
    LEE K M, GE X M. The equivalence of a jointed shield driven tunnel lining to a continuous ring structure[J]. Journal of Canadian Geotechnical Engineering, 2001, 38: 461-483.
    [18]
    HSIEH P G, OU C Y. Shape of ground surface settlement profiles caused by excavation[J]. Canadian Geotechnical Journal, 1998, 35(6): 1004-1017.
    [19]
    DG/TJ08—61—2010 基坑工程技术规范[S]. 2010. (DG/TJ08—61—2010 Technical code for excavation engineering[S]. 2010. (in Chinese))
    [20]
    王卫东, 徐中华, 王建华. 上海地区深基坑周边地表变形性状实测统计分析[J]. 岩土工程学报, 2011, 33(11): 1659-1666. (WANG Wei-dong, XU Zhong-hua, WANG Jian-hua. Statistical analysis of characteristics of ground surface settlement caused by deep excavations in Shanghai soft soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1659-1666. (in Chinese))
    [21]
    SCHUSTER M, KUNG G T C, JUANG C H, et al. Simplified model for evaluating damage potential of buildings adjacent to a braced excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(12): 1823-1835.
    [22]
    上海市市政工程管理局. 上海市地铁沿线建筑施工保护地铁技术管理暂行规定[Z]. 沪市政法(94) 第854号, 1994.(Shanghai Municipal Engineering Bureau. Provisional prescription on protecting techniques of metro[Z]. No. 854 of Shanghai Municipal Statute (94), 1994. (in Chinese))
    [23]
    GB50157—2003 地铁设计规范[S]. 2003. (GB50157—2003 Code for design of metro[S]. 2003. (in Chinese))
    [24]
    杨俊龙, 孙连元, 沈成明. 盾构机近距离穿越运营中地铁隧道施工技术研究[J]. 现代隧道技术, 2004(增刊1): 76-84. (YANG Jun-long, SUN Lian-yuan, SHEN Cheng-ming. Study on construction technology of shield tunneling under existing adjacent tunnel[J]. Modern Tunnelling Technology, 2004(S1): 76-84. (in Chinese))
    [25]
    刘庭金. 地铁盾构隧道弯矩和变形控制值研究[J]. 隧道建设, 2010, 30(增刊1): 109-102. (LIU Ting-jin. Study on control values of bending moment and deformation of shield-bored metro tunnels[J]. Tunnel Construction, 2010, 30(S1): 109-102. (in Chinese))
  • Cited by

    Periodical cited type(29)

    1. 王学峰,李翱翔,史国良,岳春强,张鹏. 大直径超长灌注桩承载特性研究. 山西建筑. 2025(04): 76-81 .
    2. 张高良. 复杂地质环境下桥梁钻孔灌注桩施工关键技术研究. 建筑技术. 2025(01): 61-64 .
    3. 田圆圆. 桥梁后压浆灌注桩承载特性试验研究. 运输经理世界. 2025(01): 75-77 .
    4. 韩重庆,戴璐,黄远,陈乾. 南京市中心医院综合楼原址新建项目单侧大悬挑超限高层结构设计. 建筑结构. 2024(16): 107-113+68 .
    5. 郭能荣. 后压浆桩基承载特性试验研究与分析. 交通世界. 2024(22): 150-153 .
    6. 朱文波,戴国亮,邓会元,竺明星,龚维明. 后顶扩臂压浆桩竖向承载机理及其桩盘力学性能研究. 土木工程学报. 2024(10): 82-94 .
    7. 毛龙,朱文波,杨嘉毅,李勇海,邓会元,程丹莲. 移动射流加固吸力式沉箱基础承载特性试验研究. 岩土工程学报. 2024(S2): 226-230+241 . 本站查看
    8. 夏建中,刘天豪. 不同土体条件下超灌量对桩体位移的影响分析. 浙江科技学院学报. 2023(01): 55-61 .
    9. 吴建军,龚洪兵,胡伟,陈东旭. 桥梁工程后压浆灌注桩承载特性试验研究. 交通世界. 2023(Z2): 226-228+231 .
    10. 吴征,祁熙鹏,党涛,苗苗,陈强. 黄土地层桥梁桩基后压浆技术研究进展. 市政技术. 2023(06): 91-99+106 .
    11. 臧诗齐 ,戴国亮 ,钱晓楠 . 不同注浆材料作用下后压浆桩桩-土界面力学特性分析. 东南大学学报(自然科学版). 2023(03): 496-503 .
    12. 詹伟达,欧红亮,王幸,娄学谦,刘日炜. 桩端及桩侧后注浆对超长灌注桩承载特性的影响. 公路交通科技. 2023(09): 141-150 .
    13. 史昊. 银川沈阳西路快速化改造总体设计研究. 中国水运. 2022(02): 144-146 .
    14. 翟聪,罗志聪,柳磊,王同卫,钱晓楠. 组合后压浆对灌注桩承载力的增强作用研究. 中国水运(下半月). 2022(01): 139-141 .
    15. 晁鹏飞. 超大吨位灌注桩承载力试验及数值模型研究. 城市建筑. 2022(16): 159-163 .
    16. 王贵森,洪宝宁,孙东宁,邵志伟. 联合后注浆对群桩基础工程特性的影响. 公路. 2022(09): 203-211 .
    17. 王卿,李瑜,余奇异,胡涛. 洞庭湖地区桥梁组合压浆灌注桩竖向承载性能试验研究. 建筑结构. 2022(S2): 2497-2501 .
    18. 陈祉阳,龚维明,靳朋刘,朱建民,陈新奎. 基于分布式后压浆的灌注桩承载力试验研究. 地下空间与工程学报. 2022(S2): 689-695 .
    19. 徐艺飞,万志辉,戴国亮,龚维明,高鲁超. 桩端后压浆灌注桩长期承载性能试验研究. 建筑结构学报. 2021(04): 139-146 .
    20. 邸洪江,余奇异,钱晓楠,胡涛. 高速公路桥梁大直径组合后压浆灌注桩自平衡试验研究. 中国水运(下半月). 2021(06): 131-133 .
    21. 秦鹏飞,王为林,袁媛. 岩土工程注浆技术与其应用研究. 地质与勘探. 2021(03): 631-639 .
    22. 叶新宇,彭锐,马新岩,张升,王善勇. 压密效应对新型压密注浆土钉的强化研究. 岩土工程学报. 2021(09): 1649-1656+1738 . 本站查看
    23. 薛振年,冯泓鸣,任晨宁,周志军. 黄土地区桥梁灌注桩桩侧-桩端联合压浆模型试验. 长安大学学报(自然科学版). 2021(06): 19-28 .
    24. 王灿,刘青,党智. 基于挠度的连续梁桥预应力损失分析. 中国水运. 2021(12): 154-156 .
    25. 杨纪,李孟然,黄毅,崔振华. 游荡型河道引桥桩基组合注浆工艺关键技术. 人民黄河. 2020(01): 117-120 .
    26. 万志辉,戴国亮,龚维明,竺明星,高鲁超. 不同成桩工艺对后压浆灌注桩承载特性影响的试验研究. 东南大学学报(自然科学版). 2020(02): 231-236 .
    27. 万志辉,戴国亮,高鲁超,龚维明. 大直径后压浆灌注桩承载力和沉降的实用计算方法研究. 岩土力学. 2020(08): 2746-2755 .
    28. 王丽锋,周长庚. 路面基床病害治理中高性能压浆材料的试验研究. 路基工程. 2019(03): 194-198+204 .
    29. 刘彦峰,胡晓明,马远刚,刘少成. 后注浆技术在粉细砂地层灌注桩中的应用. 桥梁建设. 2019(S1): 127-132 .

    Other cited types(16)

Catalog

    Article views (403) PDF downloads (585) Cited by(45)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return