• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Kuan, YE Wan-jun, JING Hong-jun, DUAN Xu, ZHANG Ji. Microscopic damage identification and macroscopic mechanical response of loess in seasonal frozen areas[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 192-197. DOI: 10.11779/CJGE2021S1035
Citation: LIU Kuan, YE Wan-jun, JING Hong-jun, DUAN Xu, ZHANG Ji. Microscopic damage identification and macroscopic mechanical response of loess in seasonal frozen areas[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 192-197. DOI: 10.11779/CJGE2021S1035

Microscopic damage identification and macroscopic mechanical response of loess in seasonal frozen areas

More Information
  • Received Date: December 14, 2020
  • Available Online: December 05, 2022
  • Considering the influences of freeze-thaw cycles(FTCs)on the structural and mechanical properties of the natural loess, the intact loess samples with different moisture contents are prepared.The proton nuclear magnetic resonance(1H NMR)and the scanning electron microscope(SEM)as well as the triaxial shear tests under FTCs are carried out, and the microstructual damage law and the macroscopic mechanical response mechanism of loess in seasonal frozen regions are studied.The test results indicate that the evolution of the soil microstructure is affected by FTCs significantly.Both the pore volume and the particle shape coefficient go through a fluctuation-growth period and an equilibrium-stable period successively.The pore volume increases markedly during the first six FTCs, and then slowes down after ten FTCs.The sample with high water content owns higher particle shape coefficient before and after FTCs.Compared with FTCs, the shape of stress-strain curve is governed by the moisture content more obviously.The degradation effect of FTCs on the failure strength of specimens is prominent, and is mainly embodied in the first ten cycles.The cohesion decreases exponentially with the increase of FTCs, while the overall attenuation amplitude decreases with the increase of water content, and the internal friction angle increases slightly.For the samples with high moisture content, fewer FTCs are required for the failure strength and cohesion tending to equilibrium.The frost-heaving stress and the moisture migration potential caused by phase change between water and ice loading-unloading repeatedly on the soil skeleton, induce the irreversible damage of microstructure, which is the potential mechanism of degradation of macroscopic mechanical properties of loess.
  • [1]
    谢定义, 邢义川. 黄土土力学[M]. 北京: 高等教育出版社, 2016.

    XIE Ding-yi, XING Yi-chuan. Soil Mechanics for Loess Soils[M]. Beijing: Higher Education Press, 2016. (in Chinese)
    [2]
    QI J L, VERMEER P A, CHENG G D. A review of the influence of freeze-thaw cycles on soil geotechnical properties[J]. Permafrost and Periglacial Processes, 2006, 17(3): 245-252. doi: 10.1002/ppp.559
    [3]
    STARKLOFF T, LARSBO M, STOLTE J, et al. Quantifying the impact of a succession of freezing-thawing cycles on the pore network of a silty clay loam and a loamy sand topsoil using X-ray tomography[J]. Catena, 2017, 156: 365-374. doi: 10.1016/j.catena.2017.04.026
    [4]
    LIU Y W, WANG Q, LIU S W, et al. Experimental investigation of the geotechnical properties and microstructure of lime-stabilized saline soils under freeze-thaw cycling[J]. Cold Regions Science and Technology, 2019, 161: 32-42. doi: 10.1016/j.coldregions.2019.03.003
    [5]
    YE W J, LI C Q. The consequences of changes in the structure of loess as a result of cyclic freezing and thawing[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(3): 2125-2138. doi: 10.1007/s10064-018-1252-3
    [6]
    KONRAD J M. Hydraulic conductivity changes of a lowplasticity till subjected to freeze-thaw cycles[J]. Géotechnique, 2010, 60(9): 679-690. doi: 10.1680/geot.08.P.020
    [7]
    WANG S L, LV Q F, BAAJ H. Volume change behaviour and microstructure of stabilized loess under cyclic freeze-thaw conditions[J]. Canadian Journal of Civil Engineering, 2016, 43(10): 865-874. doi: 10.1139/cjce-2016-0052
    [8]
    胡再强, 刘寅, 李宏儒. 冻融循环作用对黄土强度影响的试验研究[J]. 水利学报, 2014, 45(增刊2): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2014S2003.htm

    HU Zai-qiang, LIU Yin, LI Hong-ru, et al. Influence of freezing-thawing cycles on strength of loess[J]. Journal of Hydraulic Engineering, 2014, 45(S2): 14-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2014S2003.htm
    [9]
    SARAF D N, FATT I. Effect of Electrolytes on moisture determination by nuclear magnetic resonance[J]. Nature, 1967, 214: 1219-1220. doi: 10.1038/2141219a0
    [10]
    MEYER M, BUCHMANNC , SCHAUMANNGE . Determination of quantitative pore-size distribution of soils with1H NMR relaxometry[J]. European Journal of Soil Science, 2018, 69(3): 393-406. doi: 10.1111/ejss.12548
    [11]
    ANOVITZ L M, COLE D R. Characterization and analysis of porosity and pore structures[J]. Reviews in Mineralogy and Geochemistry, 2015, 80(1): 61-164. doi: 10.2138/rmg.2015.80.04
    [12]
    JAEGER F, GROHMANN E, SCHAUMANN G E. 1H NMR relaxometry in natural humous soil samples: Insights in microbial effects on relaxation time distributions[J]. Plant and Soil, 2006, 280: 209-222. doi: 10.1007/s11104-005-3035-4
    [13]
    刘宽, 叶万军, 高海军, 等. 干湿环境下膨胀土力学性能劣化的多尺度效应[J]. 岩石力学与工程学报, 2020, 39(10): 2148-2159.

    LIU Kuan, YE Wan-jun, GAO hai-jun, et al. Multi-scale effects of mechanical properties degradationofexpansivesoilunderdrying-wetting environment[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(10): 2148-2159. (in Chinese)
    [14]
    孔亮, 彭仁. 颗粒形状对类砂土力学性质影响的颗粒流模拟[J]. 岩石力学与工程学报, 2011, 30(10): 2112-2119. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201110020.htm

    KONG Liang, PENG Ren. Particle flow simulation of influence of particle shape on mechanical properties of quasi-sands[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 2112-2119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201110020.htm
    [15]
    REMPEL A W, WETTLAUFER J S, WORSTER M G. Premelting dynamics in a continuum model of frost heave[J]. Journal of Fluid Mechanics, 2004, 498: 227-244. doi: 10.1017/S0022112003006761
  • Related Articles

    [1]Rock landslide early warning in open-pit mine based on rockfall video monitoring[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240026
    [2]CAI Yuebo, XIANG Yan, SHENG Jinbao, MENG Ying. Deep-water detection, monitoring, early warning and treatment of emergencies of major water conservancy projects: a review[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 441-458. DOI: 10.11779/CJGE20221480
    [3]ZHOU Chun-hua, LI Yun-an, YIN Jian-min, WANG Yang, ZHOU Chao, GUO Xi-feng. Multivariate early warning method for rockbursts based on comprehensive microseismic and electromagnetic radiation monitoring[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 457-466. DOI: 10.11779/CJGE202003007
    [4]YANG Guang-yu, JIANG Fu-xing, QU Xiao-cheng, LI Lin, WEI Quan-de, LI Nai-lu. Comprehensive monitoring and early warning technology for rock burst of tunneling face with thick coal seams[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1949-1958. DOI: 10.11779/CJGE201910021
    [5]ZHAO Jiu-bin, LIU Yuan-xue, LIU Na, HU Ming. Association rules of monitoring and early warning by using landslides FRPFP model—Case study of Jiangjin-Fengjie reach in Three Gorges Reservoir area[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 492-500. DOI: 10.11779/CJGE201903011
    [6]XU Yang-qing, CHENG Lin. Analysis processing of monitoring data and forecast and early warning system of foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk1): 219-224. DOI: 10.11779/CJGE2014S1038
    [7]JIANG Peng-ming, MEI Ling, JI Pei-xiang, ZHOU Ai-zhao. Development and application of monitoring and warning system geological disasters of slope in Zhenjiang Martyrs Cemetery[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 340-345.
    [8]WANG Wei, SHEN Zhenzhong, LI Taofan. Safety early warning evaluation model for dams based on coupled method of genetic algorithm and adapting particle swarm optimization algorithm[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1242-1247.
    [9]MA Fuheng, HE Xinwang, WU Guangyao. Risk early-warning index system for earth and rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1734-1737.
    [10]YU Yuzhen, LIN Hung chou, LI Guangxin. Analysis of finite element method for early warning of landslide[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1264-1267.
  • Cited by

    Periodical cited type(10)

    1. 唐丽云,王鹏宇,郑娟娟,于永堂,金龙,崔玉鹏,罗滔. 冰水赋存演化下冻结土石混合体-结构界面强度劣化机制及模型. 岩土工程学报. 2024(05): 988-997 . 本站查看
    2. 田雨,汪恩良,谢崇宝,任志凤,于俊. 考虑辐照影响的寒区堤防冻深预测模型试验研究. 水利学报. 2023(09): 1111-1121 .
    3. LiYun Tang,ShiYuan Sun,JianGuo Zheng,Long Jin,YongTang Yu,Tao Luo,Xu Duan. Pore evolution and shear characteristics of a soil-rock mixture upon freeze-thaw cycling. Research in Cold and Arid Regions. 2023(04): 179-190 .
    4. 李刚,唐丽云,金龙,崔玉鹏,奚家米. 冻融循环下土石混合体强度劣化特性研究. 河南科技大学学报(自然科学版). 2022(04): 67-75+7-8 .
    5. 汪恩良,田雨,刘兴超,任志凤,胡胜博,于俊,刘承前,李宇昂. 基于WOA-BP神经网络的超低温冻土抗压强度预测模型研究. 力学学报. 2022(04): 1145-1153 .
    6. 秦庆词,李克钢,李明亮,李旺,刘博. 基于核磁共振技术的白云岩微观损伤致劣机制研究. 岩石力学与工程学报. 2022(S1): 2944-2954 .
    7. 荣传新,李承涛,王彬,施志斌. 砂层冻结过程中未冻水含量核磁共振实验研究. 重庆科技学院学报(自然科学版). 2022(05): 90-96 .
    8. 汪恩良,任志凤,韩红卫,田雨,胡胜博,刘兴超. 超低温冻结黏土单轴抗压力学性质试验研究. 岩土工程学报. 2021(10): 1851-1860 . 本站查看
    9. 李帅君,张鹏,张莲海,陈雪萍,展静,吴青柏. 多层核磁探测介质内温度梯度下THF水合物形成特征. 中国科学:物理学 力学 天文学. 2020(08): 125-135 .
    10. 唐丽云,王鑫,邱培勇,金龙. 冻土区土石混合体冻融交界面剪切性能研究. 岩土力学. 2020(10): 3225-3235 .

    Other cited types(15)

Catalog

    Article views PDF downloads Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return