• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHU Weibin, LIU Chang, ZHONG Xiaochun, YOU Zhi, ZHU Nengwen. Performance evaluation of shield tail brushes based on compression and grease escape tests[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1086-1093. DOI: 10.11779/CJGE20211421
Citation: ZHU Weibin, LIU Chang, ZHONG Xiaochun, YOU Zhi, ZHU Nengwen. Performance evaluation of shield tail brushes based on compression and grease escape tests[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1086-1093. DOI: 10.11779/CJGE20211421

Performance evaluation of shield tail brushes based on compression and grease escape tests

More Information
  • Received Date: November 30, 2021
  • Available Online: May 18, 2023
  • The failures of shield tail sealing have occurred from time to time, which may result in water and sand-gushing accidents in severe cases. This phenomenon has attracted great attention from the engineering and academic circles. According to the tests of dynamic compression and sealing grease escape of shield tail brushes, the results show that: (1) The dynamic compression tests can reflect the mechanical properties of the shield tail brushes, and save the test time greatly. (2) With the decrease of the shield tail gap, the adhesion force and elastic coefficient of the shield tail brushes increase continuously, the proportion of plastic deformation increases, and that of elastic deformation decreases. When the shield tail gap is 110 mm, the proportion of elastic deformation is 90%, and when it is compressed to 50 mm, the proportion of elastic deformation reduces to 60%. (3) The relationship among the gap, grease escape and adhesion force of shield tail is established, and the working safety area of the shield tail sealing system is obtained so as to evaluate the effectiveness of the status of shield tail sealing. The evaluation method for the performance of shield tail sealing is established, and can provide a reference for the performance evaluation and detection of the shield tail brushes.
  • [1]
    何 川, 封 坤, 方 勇. 盾构法修建地铁隧道的技术现状与展望[J]. 西南交通大学学报, 2015, 50(1): 97-109. doi: 10.3969/j.issn.0258-2724.2015.01.015

    HE Chuan, FENG Kun, FANG Yong. Review and Prospects on Constructing Technologies of Metro Tunnels Using Shield Tunnelling Method [J]. Journal of Southwest Jiaotong University, 2015, 50(1): 97-109. (in Chinese) doi: 10.3969/j.issn.0258-2724.2015.01.015
    [2]
    朱 伟, 陈仁俊. 盾构隧道施工技术现状及展望(第3讲)——盾构隧道应用前景及发展方向[J]. 岩土工程界, 2002, 5(1): 18-20, 52. doi: 10.3969/j.issn.1674-7801.2002.01.040

    ZHU Wei, CHEN Ren-jun. Current status and prospects of shield tunnel construction technology (lecture3)-application prospects and development directions of shield tunnels[J]. Geotechnical Engineering, 2002, 5(1): 18-20, 52. (in Chinese) doi: 10.3969/j.issn.1674-7801.2002.01.040
    [3]
    李艳春. 盾构法隧道施工中盾尾刷的优化与保护[J]. 湖南城市学院学报(自然科学版), 2015, 24(3): 33-34. doi: 10.3969/j.issn.1672-7304.2015.03.012

    LI Yanchun. Shield tunneling optimization and protection shield tail brush[J]. Journal of Hunan City University (Natural Science), 2015, 24(3): 33-34. (in Chinese) doi: 10.3969/j.issn.1672-7304.2015.03.012
    [4]
    任广艳. 透水涌砂冒险堵漏隧道坍塌撤人不及: 广东省佛山市轨道交通2号线"2.7"透水坍塌重大事故分析[J]. 吉林劳动保护, 2019(8): 40-42.

    REN Guangyan. Seepage sand gushing, risk plugging, tunnel collapse, evacuation failure—analysis of the "2.7" serious accident of seepage collapse in Foshan Rail Transit Line 2, Guangdong Province[J]. Jilin Labour Protection, 2019(8): 40-42. (in Chinese)
    [5]
    YU C, ZHOU A N, CHEN J, et al. Analysis of a tunnel failure caused by leakage of the shield tail seal system[J]. Underground Space, 2020, 5(2): 105-114. doi: 10.1016/j.undsp.2018.11.003
    [6]
    李奕, 钟志全. 一种新型盾尾刷的设计与应用[J]. 建筑机械化, 2011, 32(1): 82-84. doi: 10.3969/j.issn.1001-1366.2011.01.020

    LI Yi, ZHONG Zhiquan. Design and application of a new-type shield tail brush[J]. Construction Mechanization, 2011, 32(1): 82-84. (in Chinese) doi: 10.3969/j.issn.1001-1366.2011.01.020
    [7]
    霍志光. 新型盾尾刷设计与应用分析[J]. 价值工程, 2011, 30(8): 87. doi: 10.3969/j.issn.1006-4311.2011.08.059

    HUO Zhiguang. Design and application analysis of new shield tail brush[J]. Value Engineering, 2011, 30(8): 87. (in Chinese) doi: 10.3969/j.issn.1006-4311.2011.08.059
    [8]
    沈桂丽, 刘金祥, 李剑雄, 等. 盾尾密封刷实验平台的设计与研究[J]. 隧道建设, 2015, 35(8): 851-854. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201508023.htm

    SHEN Guili, LIU Jinxiang, LI Jianxiong, et al. Design of and study on tail brush experimental platform[J]. Tunnel Construction, 2015, 35(8): 851-854. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201508023.htm
    [9]
    WEI Linchun. Experimental study on mechanical bahavior of wire brushes on shield tail[J]. Tunnel Construction, 2021, 41(2): 206-211.
    [10]
    YE Guan-lin, HAN Lei, SANTOSH Kumar Yadav, et al. Investigation on the tail brush induced loads upon segmental lining of a shield tunnel with small overburden[J]. Tunnelling and Underground Space Technology, 2020, 97: 103283. doi: 10.1016/j.tust.2020.103283
    [11]
    钟小春, 莫暖娇, 余明学, 等. 盾尾刷环形密封系统单元试验及水密性机制研究[J]. 岩土工程学报, 2023, 45(2): 354-361. doi: 10.11779/CJGE20211464

    ZHONG Xiaochun, MO Nuanjiao, YU Mingxue, et al. Study on the unit test of shield tail brush annular sealing system and its watertightness mechanism[J]. Journal of Geotechnical Engineering, 2023, 45(2): 354-361. (in Chinese) doi: 10.11779/CJGE20211464
    [12]
    黄旭民, 黄林冲, 梁禹. 施工期同步注浆影响下盾构隧道管片纵向上浮特征分析与应用[J]. 岩土工程学报, 2021, 43(9): 1700-1707. doi: 10.11779/CJGE202109015

    HUANG Xumin, HUANG Linchong, LIANG Yu. Analysis and application of longitudinal uplift characteristics of segments of shield tunnels affected by synchronous grouting during construction period[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1700-1707. (in Chinese) doi: 10.11779/CJGE202109015
    [13]
    王德乾, 郑筱彦, 斯芳芳, 等. 盾尾密封油脂与盾构机及施工地层的适应性研究[J]. 铁道建筑技术, 2021(7): 8-12, 69. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS202107002.htm

    WANG Deqian, ZHENG Xiaoyan, SI Fangfang, et al. Study on adaptability of shield tail sealing paste, shield machine and shield construction strata[J]. Railway Construction Technology, 2021(7): 8-12, 69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS202107002.htm
  • Related Articles

    [1]Experimental Study on the Influence of Formation Lateral Pressure Coefficient on the Mechanical Properties of Double-Layer Lining Structure in Shield Tunnel[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20230909
    [2]ZHONG Xiaochun, MO Nuanjiao, YU Mingxue, ZHU Weibin, ZHU Nengwen, YOU Zhi. Unit tests on shield tail brush annular sealing system and its watertightness mechanism[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 354-361. DOI: 10.11779/CJGE20211464
    [3]JIANG Ming-jie, LU Xiao-ping, ZHU Jun-gao, JI En-yue, GUO Wan-li. Method for estimating at-rest lateral pressure coefficient of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 77-81. DOI: 10.11779/CJGE2018S2016
    [4]SHI Jian-yong, ZHAO Yi. Influence of air pressure and void on permeability coefficient of air in municipal solid waste (MSW)[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 586-593. DOI: 10.11779/CJGE201504002
    [5]LI Guo-wei, HU Jian, LU Xiao-cen, ZHOU Yang. One-dimensional secondary consolidation coefficient and lateral pressure coefficient of overconsolidated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2198-2205.
    [6]JIA Ning. Coefficient of at-rest earth pressure from limited backfill[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1333-1337.
    [7]TANG Shidong, Lv Jianchun, FU Zong. Solution to initial horizontal stress and lateral earth pressure coefficient at rest by flat dilatometer tests[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2144-2148.
    [8]LIN Zheng, CHEN Renpeng, CHEN Yunmin, XU Feng. A method for in-situ testing of coefficients of consolidation and permeability of soils[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 505-510.
    [9]GAO Jiangping, YU Maohong, HU Changshun, CHEN Zhongda. Study on the distributive rule of the earth pressure and its coefficient of the reinforced earth wall[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(5): 582-584.
    [10]Peng Dapeng. Probability Analysis of Soil Pressure Coefficient[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(6): 117-122.
  • Cited by

    Periodical cited type(10)

    1. 李永辉,王海,牛恒宇,蒋晓天. 砂土-钢板界面剪切试验与PFC细观模拟分析. 长江科学院院报. 2025(02): 107-114+137 .
    2. 罗余游,刘洪伟,朱鹏宇. 基于DDA方法的高填方分层碾压强夯研究. 路基工程. 2024(02): 153-158 .
    3. 冯忞,宋文捷. 含水率对残积土与土工织物界面剪切特性的影响. 华南地震. 2024(01): 157-164 .
    4. 禹克强,孙少锐,曹曜,王武超,黄佳豪,靳春林,赵博涵. 养护时间和基质含量对土石混合体力学特性的影响. 河南科学. 2024(07): 994-1002 .
    5. 吴建奇,李敏,罗翔,陈腾. 密实度对格栅-再生混凝土骨料界面剪切特性的影响. 路基工程. 2024(05): 84-90 .
    6. 石广斌,周泽凯. 土石混合体边坡力学特性及稳定性分析方法研究进展. 金属矿山. 2024(10): 202-215 .
    7. 刘旻,张斌,刘飞禹,刘文燕. 土工格栅防护下埋地管道的力学性能及变形分析. 科学技术与工程. 2024(31): 13531-13539 .
    8. 龚健,梁桓玮,王剑峰,王展宏,许海,欧孝夺,罗月静. 含石量、粗颗粒级配与细粒土性质对土石混合体剪切特性影响研究. 广西大学学报(自然科学版). 2024(06): 1244-1258 .
    9. 汤新,蒋亚龙,孙洋,吴亮秦,圣小珍,郭文杰,王建立. 基于离散元法的土石混合体力学特性数值分析. 华东交通大学学报. 2024(06): 1-10 .
    10. 崔倩. 3D土工格栅-砂界面剪切性状研究. 低温建筑技术. 2023(12): 61-65 .

    Other cited types(8)

Catalog

    Article views (214) PDF downloads (38) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return