• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MENG Chang, TANG Liang. Seismic fragility analysis of pile-supported wharf in nearshore liquefiable ground[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2274-2282. DOI: 10.11779/CJGE202112014
Citation: MENG Chang, TANG Liang. Seismic fragility analysis of pile-supported wharf in nearshore liquefiable ground[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2274-2282. DOI: 10.11779/CJGE202112014

Seismic fragility analysis of pile-supported wharf in nearshore liquefiable ground

More Information
  • Received Date: November 30, 2020
  • Available Online: November 30, 2022
  • The seismic fragility analysis has become a research hotspot in structural engineering and bridge engineering, but there are few studies in the field of pile-supported wharf in nearshore liquefiable ground. Based on the typical engineering examples, a numerical model for seismic response analysis of all-straight pile and pile-supported wharf in nearshore liquefiable ground is established. In view of bending failure and bending shear failure, through the modal analysis and pushover analysis, the damage evolution process of pile-supported wharf and the quantitative discrimination criteria for each damage stage are proposed. With PGA as the ground motion intensity index, 14 groups of typical ground motions are selected and scaled to 8 different intensity levels. With the aid of the incremental dynamic analysis, the IM-EDP curve of the pile-supported wharf in nearshore liquefiable ground is proposed. Based on the proposed criterion for determining the damage of pile-supported wharf, the seismic fragility curve of pile-supported wharf is derived. The cumulative distribution function of log-normal distribution is used to fit the seismic fragility curve, and a simplified seismic fragility curve of pile-supported wharf is proposed for practical application. This work may provide important theoretical basis for the seismic reinforcement of pile-supported wharf in nearshore liquefiable ground.
  • [1]
    BRADLEY B A, CUBRINOVSKI M, DHAKAL R P, et al. Probabilistic seismic performance and loss assessment of a bridge-foundation-soil system[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(5): 395-411. doi: 10.1016/j.soildyn.2009.12.012
    [2]
    GOULET C A, HASELTON C B, MITRANI-REISER J, et al. Evaluation of the seismic performance of a code-conforming reinforced-concrete frame building—from seismic hazard to collapse safety and economic losses[J]. Earthquake Engineering & Structural Dynamics, 2007, 36(13): 1973-1997.
    [3]
    ICHII K. Fragility curves for gravity-type quay walls based on effective stress analyses[C]//13th WCEE. 2004, Vancouver.
    [4]
    CHIOU J S, CHIANG C H, YANG H H, et al. Developing fragility curves for a pile-supported wharf[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(5/6): 830-840.
    [5]
    HEIDARY-TORKAMANI H, BARGI K, AMIRABADI R, et al. Fragility estimation and sensitivity analysis of an idealized pile-supported wharf with batter piles[J]. Soil Dynamics and Earthquake Engineering, 2014, 61/62: 92-106. doi: 10.1016/j.soildyn.2014.01.024
    [6]
    SU L, WAN H P, DONG Y, et al. Seismic fragility assessment of large-scale pile-supported wharf structures considering soil-pile interaction[J]. Engineering Structures, 2019, 186: 270-281. doi: 10.1016/j.engstruct.2019.02.022
    [7]
    SU L, WAN H P, BI K M, et al. Seismic fragility analysis of pile-supported wharves with the influence of soil permeability[J]. Soil Dynamics and Earthquake Engineering, 2019, 122: 211-227. doi: 10.1016/j.soildyn.2019.04.003
    [8]
    MIRZAEEFARD H, HARIRI-ARDEBILI M A, MIRTAHERI M. Time-dependent seismic fragility analysis of corroded pile-supported wharves with updating limit states[J]. Soil Dynamics and Earthquake Engineering, 2021, 142: 106551. doi: 10.1016/j.soildyn.2020.106551
    [9]
    王炳煌. 高桩码头工程[M]. 北京: 人民交通出版社, 2010.

    WANG Bing-huang. Pile Wharf Engineering[M]. Beijing: China Communications Press, 2010. (in Chinese)
    [10]
    MCKENNA F. OpenSees: a framework for earthquake engineering simulation[J]. Computing in Science & Engineering, 2011, 13(4): 58-66.
    [11]
    常士骠, 张苏民. 工程地质手册[M]. 北京: 中国建筑工业出版社, 2007.

    CHANG Shi-piao, ZHANG Su-min. Geological Engineering Handbook[M]. Beijing: China Architecture and Building Press, 2007. (in Chinese)
    [12]
    唐亮, 凌贤长, 徐鹏举, 等. 液化场地桩-土地震相互作用振动台试验数值模拟[J]. 土木工程学报, 2012, 45(增刊1): . https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2012S1060.htm

    TANG Liang, LING Xian-zhang, XU Peng-ju, et al. Numerical simulation of shaking table test for seismic soil-pile interaction in liquefying ground[J]. Chinese Civil Engineering Journal, 2012, 45(S1): . (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2012S1060.htm
    [13]
    HUI S Q, TANG L, ZHANG X Y, et al. An investigation of the influence of near-fault ground motion parameters on the pile's response in liquefiable soil[J]. Earthquake Engineering and Engineering Vibration, 2018, 17(4): 729-745. doi: 10.1007/s11803-018-0472-7
    [14]
    CONG S Y, TANG L, LING X Z, et al. Numerical analysis of liquefaction-induced differential settlement of shallow foundations on an island slope[J]. Soil Dynamics and Earthquake Engineering, 2021, 140: 106453. doi: 10.1016/j.soildyn.2020.106453
    [15]
    孟畅. 液化场地高桩码头地震易损性分析[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    MENG Chang. Seismic Fragility Analysis of the Pile-supported Wharf in Liquefiable Soils[D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese)
    [16]
    苏雷. 液化侧向扩展场地桩-土体系地震模拟反应分析[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    SU Lei. Earthquake Simulation Response of Soil-pile System in Liquefaction-induced Lateral Spreading Ground[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
    [17]
    惠舒清. 液化场地简支桥梁体系地震反应与抗震性态分析[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    HUI Shu-qing. Seismic Response and Performance Analysis of Soil-pile Group-multi-span Simply Supported Bridge System in Liquefiable Ground[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
    [18]
    YANG Z. Numerical Modeling of Earthquake Site Response Including Dilation and Liquefaction[D]. NewYork: Columbia University, 2000.
    [19]
    YANG Z, LU J, ELGAMAL A. OpenSees Soil Models and Solid-fluid Fully Coupled Elements Wser Manual[Z]. San Diego: University of California, 2008.
    [20]
    梁兴文, 王社良, 李晓文. 混凝土结构设计原理[M]. 北京: 科学出版社, 2003.

    LIANG Xing-wen, WANG She-liang, LI Xiao-wen. Design Theory for Concrete Structure[M]. Beijing: Science Press, 2003. (in Chinese)
    [21]
    预应力混凝土用钢棒:GB/T 5223.3—2017[S]. 2017.

    Steel Bars for the Prestressing of Concrete: GB/T 5223.3— 2017[S]. Beijing: Standards Press of China, 2017. (in Chinese)
    [22]
    张楠. 考虑结构—桩—土相互作用的PHC管桩抗震性能研究[D]. 天津: 天津大学, 2014.

    ZHANG Nan. Study on Seismic Performance of Pipe Piles Considering Soil-Pile-Superstructure Interaction[D]. Tianjin: Tianjin University, 2014. (in Chinese)
    [23]
    ZACCHEI E, LYRA P H C, STUCCHI F R. Pushover analysis for flexible and semi-flexible pile-supported wharf structures accounting the dynamic magnification factors due to torsional effects[J]. Structural Concrete, 2020, 21(6): 2669-2688. doi: 10.1002/suco.202000137
    [24]
    JOHNSON G S, ARULMOLI A K, ASAVAREUNGCHAI S. Seismic Design of Piers and Wharves[M]. ASCE, 2014.
    [25]
    阮起楠. 预应力混凝土管桩[M]. 中国建材工业出版社, 2000.

    RUAN Qi-nan. Prestressed Concrete Pipe Pile[M]. Beijing: China Building Material Industry Publishing House, 2000. (in Chinese)
    [26]
    BOULANGER R W. Seismic design guidelines for port structures[J]. Earthquake Spectra, 2002, 18(3): 579-580. doi: 10.1193/1.1510751
    [27]
    Design of Structures for Earthquake Resistance; General Rules, Seismic Actions, Design Rules for Buildings, Foundations and Retaining Structures: Designer's Guide To EN 1998-1 and en 1998-5 Eurocode 8[S]. 2005.
    [28]
    中国地震动参数区划图:GB 18306—2015[S]. 2015.

    Seismic Ground Motion Parameters Zonation Map of China: GB 18306—2015[S]. 2015. (in Chinese)
    [29]
    CIMELLARO G P, REINHORN A M. Multidimensional performance limit state for hazard fragility functions[J]. Journal of Engineering Mechanics, 2011, 137(1): 47-60. doi: 10.1061/(ASCE)EM.1943-7889.0000201
    [30]
    LU D G, YU X H, PAN F, et al. Probabilistic seismic demand analysis considering random system properties by an improved cloud method[C]//The 14th World Conference on Earthquake Engineering, 2008, Beijing.
    [31]
    DE RISI R, GODA K, TESFAMARIAM S. Multi- dimensional damage measure for seismic reliability analysis[J]. Structural Safety, 2019, 78: 1-11. doi: 10.1016/j.strusafe.2018.12.002
    [32]
    SINGHAL A, KIREMIDJIAN A S. Bayesian updating of fragilities with application to RC frames[J]. Journal of Structural Engineering, 1998, 124(8): 922-929. doi: 10.1061/(ASCE)0733-9445(1998)124:8(922)
  • Related Articles

    [1]CHEN Renpeng, LIU Muchun, MENG Fanyan, LI Zhongchao, WU Huaina, CHENG Hongzhan. Circumferential forces and deformations of shield tunnels due to lateral excavation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 24-32. DOI: 10.11779/CJGE20211420
    [2]ZHANG Dong-mei, ZHOU Wen-ding, BU Xiang-hong, JIANG Yan, JIA Kai, YANG Guang-hua. Experimental study on performance of shield–reinforced steel fiber concrete double-layer linings under internal water pressure[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1528-1534. DOI: 10.11779/CJGE202208018
    [3]ZHANG Wen-jun, CAO Wen-zhen. Mechanical and waterproof performances of joints of shield tunnels with large cross-section under earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 653-660. DOI: 10.11779/CJGE202104007
    [4]TANG Zhao-guang, WANG Yong-zhi, SUN Rui, DUAN Xue-feng, WANG Ti-qiang, WANG Hao-ran. Development and performance verification of miniature pore water pressure transducer for dynamic centrifuge modeling[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 129-134. DOI: 10.11779/CJGE2020S2023
    [5]GU Xing-wen, REN Guo-feng, WANG Nian-xiang, XU Guang-ming. Development and performance tests on NS-2 horizontal unidirectional centrifugal shaker[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 72-76. DOI: 10.11779/CJGE2020S2013
    [6]CHENG Yong-hui, GUO Peng-jie, ZHANG Wei. Performance indices and test method for reverse check valves[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 114-118. DOI: 10.11779/CJGE2016S1021
    [7]XIE Shi-ping, HE Shun-hui, ZHANG Jian. Factors for anti-seepage performance of GCL[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 56-61. DOI: 10.11779/CJGE2016S1010
    [8]ZHANG Wen-jie, GENG Xiao. Performance and mechanism of capillary-barrier evaportranspiration cover of landfills[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 454-459. DOI: 10.11779/CJGE201603008
    [9]FENG Zhong-ju, WU Yan-ling, JIA Yan-wu, XIONG Shan-ming, WANG Yan-zhi. Model tests on force and deformation characteristics of corrugated steel pipe culvert[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 187-192.
    [10]ZHANG Ji-chao, YANG Yong-kang, WANG Ke-yi, MA Xu. Conception of performance-based pile foundation design[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 54-57.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return