Citation: | MENG Chang, TANG Liang. Seismic fragility analysis of pile-supported wharf in nearshore liquefiable ground[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2274-2282. DOI: 10.11779/CJGE202112014 |
[1] |
BRADLEY B A, CUBRINOVSKI M, DHAKAL R P, et al. Probabilistic seismic performance and loss assessment of a bridge-foundation-soil system[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(5): 395-411. doi: 10.1016/j.soildyn.2009.12.012
|
[2] |
GOULET C A, HASELTON C B, MITRANI-REISER J, et al. Evaluation of the seismic performance of a code-conforming reinforced-concrete frame building—from seismic hazard to collapse safety and economic losses[J]. Earthquake Engineering & Structural Dynamics, 2007, 36(13): 1973-1997.
|
[3] |
ICHII K. Fragility curves for gravity-type quay walls based on effective stress analyses[C]//13th WCEE. 2004, Vancouver.
|
[4] |
CHIOU J S, CHIANG C H, YANG H H, et al. Developing fragility curves for a pile-supported wharf[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(5/6): 830-840.
|
[5] |
HEIDARY-TORKAMANI H, BARGI K, AMIRABADI R, et al. Fragility estimation and sensitivity analysis of an idealized pile-supported wharf with batter piles[J]. Soil Dynamics and Earthquake Engineering, 2014, 61/62: 92-106. doi: 10.1016/j.soildyn.2014.01.024
|
[6] |
SU L, WAN H P, DONG Y, et al. Seismic fragility assessment of large-scale pile-supported wharf structures considering soil-pile interaction[J]. Engineering Structures, 2019, 186: 270-281. doi: 10.1016/j.engstruct.2019.02.022
|
[7] |
SU L, WAN H P, BI K M, et al. Seismic fragility analysis of pile-supported wharves with the influence of soil permeability[J]. Soil Dynamics and Earthquake Engineering, 2019, 122: 211-227. doi: 10.1016/j.soildyn.2019.04.003
|
[8] |
MIRZAEEFARD H, HARIRI-ARDEBILI M A, MIRTAHERI M. Time-dependent seismic fragility analysis of corroded pile-supported wharves with updating limit states[J]. Soil Dynamics and Earthquake Engineering, 2021, 142: 106551. doi: 10.1016/j.soildyn.2020.106551
|
[9] |
王炳煌. 高桩码头工程[M]. 北京: 人民交通出版社, 2010.
WANG Bing-huang. Pile Wharf Engineering[M]. Beijing: China Communications Press, 2010. (in Chinese)
|
[10] |
MCKENNA F. OpenSees: a framework for earthquake engineering simulation[J]. Computing in Science & Engineering, 2011, 13(4): 58-66.
|
[11] |
常士骠, 张苏民. 工程地质手册[M]. 北京: 中国建筑工业出版社, 2007.
CHANG Shi-piao, ZHANG Su-min. Geological Engineering Handbook[M]. Beijing: China Architecture and Building Press, 2007. (in Chinese)
|
[12] |
唐亮, 凌贤长, 徐鹏举, 等. 液化场地桩-土地震相互作用振动台试验数值模拟[J]. 土木工程学报, 2012, 45(增刊1): . https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2012S1060.htm
TANG Liang, LING Xian-zhang, XU Peng-ju, et al. Numerical simulation of shaking table test for seismic soil-pile interaction in liquefying ground[J]. Chinese Civil Engineering Journal, 2012, 45(S1): . (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2012S1060.htm
|
[13] |
HUI S Q, TANG L, ZHANG X Y, et al. An investigation of the influence of near-fault ground motion parameters on the pile's response in liquefiable soil[J]. Earthquake Engineering and Engineering Vibration, 2018, 17(4): 729-745. doi: 10.1007/s11803-018-0472-7
|
[14] |
CONG S Y, TANG L, LING X Z, et al. Numerical analysis of liquefaction-induced differential settlement of shallow foundations on an island slope[J]. Soil Dynamics and Earthquake Engineering, 2021, 140: 106453. doi: 10.1016/j.soildyn.2020.106453
|
[15] |
孟畅. 液化场地高桩码头地震易损性分析[D]. 哈尔滨: 哈尔滨工业大学, 2020.
MENG Chang. Seismic Fragility Analysis of the Pile-supported Wharf in Liquefiable Soils[D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese)
|
[16] |
苏雷. 液化侧向扩展场地桩-土体系地震模拟反应分析[D]. 哈尔滨: 哈尔滨工业大学, 2016.
SU Lei. Earthquake Simulation Response of Soil-pile System in Liquefaction-induced Lateral Spreading Ground[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
|
[17] |
惠舒清. 液化场地简支桥梁体系地震反应与抗震性态分析[D]. 哈尔滨: 哈尔滨工业大学, 2018.
HUI Shu-qing. Seismic Response and Performance Analysis of Soil-pile Group-multi-span Simply Supported Bridge System in Liquefiable Ground[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
|
[18] |
YANG Z. Numerical Modeling of Earthquake Site Response Including Dilation and Liquefaction[D]. NewYork: Columbia University, 2000.
|
[19] |
YANG Z, LU J, ELGAMAL A. OpenSees Soil Models and Solid-fluid Fully Coupled Elements Wser Manual[Z]. San Diego: University of California, 2008.
|
[20] |
梁兴文, 王社良, 李晓文. 混凝土结构设计原理[M]. 北京: 科学出版社, 2003.
LIANG Xing-wen, WANG She-liang, LI Xiao-wen. Design Theory for Concrete Structure[M]. Beijing: Science Press, 2003. (in Chinese)
|
[21] |
预应力混凝土用钢棒:GB/T 5223.3—2017[S]. 2017.
Steel Bars for the Prestressing of Concrete: GB/T 5223.3— 2017[S]. Beijing: Standards Press of China, 2017. (in Chinese)
|
[22] |
张楠. 考虑结构—桩—土相互作用的PHC管桩抗震性能研究[D]. 天津: 天津大学, 2014.
ZHANG Nan. Study on Seismic Performance of Pipe Piles Considering Soil-Pile-Superstructure Interaction[D]. Tianjin: Tianjin University, 2014. (in Chinese)
|
[23] |
ZACCHEI E, LYRA P H C, STUCCHI F R. Pushover analysis for flexible and semi-flexible pile-supported wharf structures accounting the dynamic magnification factors due to torsional effects[J]. Structural Concrete, 2020, 21(6): 2669-2688. doi: 10.1002/suco.202000137
|
[24] |
JOHNSON G S, ARULMOLI A K, ASAVAREUNGCHAI S. Seismic Design of Piers and Wharves[M]. ASCE, 2014.
|
[25] |
阮起楠. 预应力混凝土管桩[M]. 中国建材工业出版社, 2000.
RUAN Qi-nan. Prestressed Concrete Pipe Pile[M]. Beijing: China Building Material Industry Publishing House, 2000. (in Chinese)
|
[26] |
BOULANGER R W. Seismic design guidelines for port structures[J]. Earthquake Spectra, 2002, 18(3): 579-580. doi: 10.1193/1.1510751
|
[27] |
Design of Structures for Earthquake Resistance; General Rules, Seismic Actions, Design Rules for Buildings, Foundations and Retaining Structures: Designer's Guide To EN 1998-1 and en 1998-5 Eurocode 8[S]. 2005.
|
[28] |
中国地震动参数区划图:GB 18306—2015[S]. 2015.
Seismic Ground Motion Parameters Zonation Map of China: GB 18306—2015[S]. 2015. (in Chinese)
|
[29] |
CIMELLARO G P, REINHORN A M. Multidimensional performance limit state for hazard fragility functions[J]. Journal of Engineering Mechanics, 2011, 137(1): 47-60. doi: 10.1061/(ASCE)EM.1943-7889.0000201
|
[30] |
LU D G, YU X H, PAN F, et al. Probabilistic seismic demand analysis considering random system properties by an improved cloud method[C]//The 14th World Conference on Earthquake Engineering, 2008, Beijing.
|
[31] |
DE RISI R, GODA K, TESFAMARIAM S. Multi- dimensional damage measure for seismic reliability analysis[J]. Structural Safety, 2019, 78: 1-11. doi: 10.1016/j.strusafe.2018.12.002
|
[32] |
SINGHAL A, KIREMIDJIAN A S. Bayesian updating of fragilities with application to RC frames[J]. Journal of Structural Engineering, 1998, 124(8): 922-929. doi: 10.1061/(ASCE)0733-9445(1998)124:8(922)
|
[1] | CHEN Renpeng, LIU Muchun, MENG Fanyan, LI Zhongchao, WU Huaina, CHENG Hongzhan. Circumferential forces and deformations of shield tunnels due to lateral excavation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 24-32. DOI: 10.11779/CJGE20211420 |
[2] | ZHANG Dong-mei, ZHOU Wen-ding, BU Xiang-hong, JIANG Yan, JIA Kai, YANG Guang-hua. Experimental study on performance of shield–reinforced steel fiber concrete double-layer linings under internal water pressure[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1528-1534. DOI: 10.11779/CJGE202208018 |
[3] | ZHANG Wen-jun, CAO Wen-zhen. Mechanical and waterproof performances of joints of shield tunnels with large cross-section under earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 653-660. DOI: 10.11779/CJGE202104007 |
[4] | TANG Zhao-guang, WANG Yong-zhi, SUN Rui, DUAN Xue-feng, WANG Ti-qiang, WANG Hao-ran. Development and performance verification of miniature pore water pressure transducer for dynamic centrifuge modeling[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 129-134. DOI: 10.11779/CJGE2020S2023 |
[5] | GU Xing-wen, REN Guo-feng, WANG Nian-xiang, XU Guang-ming. Development and performance tests on NS-2 horizontal unidirectional centrifugal shaker[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 72-76. DOI: 10.11779/CJGE2020S2013 |
[6] | CHENG Yong-hui, GUO Peng-jie, ZHANG Wei. Performance indices and test method for reverse check valves[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 114-118. DOI: 10.11779/CJGE2016S1021 |
[7] | XIE Shi-ping, HE Shun-hui, ZHANG Jian. Factors for anti-seepage performance of GCL[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 56-61. DOI: 10.11779/CJGE2016S1010 |
[8] | ZHANG Wen-jie, GENG Xiao. Performance and mechanism of capillary-barrier evaportranspiration cover of landfills[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 454-459. DOI: 10.11779/CJGE201603008 |
[9] | FENG Zhong-ju, WU Yan-ling, JIA Yan-wu, XIONG Shan-ming, WANG Yan-zhi. Model tests on force and deformation characteristics of corrugated steel pipe culvert[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 187-192. |
[10] | ZHANG Ji-chao, YANG Yong-kang, WANG Ke-yi, MA Xu. Conception of performance-based pile foundation design[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 54-57. |