• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
ZHAO Meng, XIAO Ming, CHEN Jun-tao, YANG Bu-yun. Numerical simulation of seismic response of a deeply-buried underground cavern in interbedded rock mass[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2159-2168. DOI: 10.11779/CJGE202112002
Citation: ZHAO Meng, XIAO Ming, CHEN Jun-tao, YANG Bu-yun. Numerical simulation of seismic response of a deeply-buried underground cavern in interbedded rock mass[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2159-2168. DOI: 10.11779/CJGE202112002

Numerical simulation of seismic response of a deeply-buried underground cavern in interbedded rock mass

More Information
  • Received Date: March 02, 2021
  • Available Online: November 30, 2022
  • In order to study the seismic wave field characteristics of large deeply-buried underground caverns, the input methods for obliquely incident earthquakes in deeply-buried underground caverns are proposed by converting the site seismic response into the equivalent load acting on the artificial boundaries. It is suitable to reflect the incident direction, the multi-incident surfaces and the inconsistency of near-field obliquely incident earthquakes. According to the dynamic interaction characteristics between interlayers in interbedded rock mass under seismic action, a dynamic contact analysis method considering the seismic deterioration effect and the bond-slip characteristics of interface is also established. Consequently, a dynamic response analysis method for a deeply-buried underground cavern in interbedded rock mass under obliquely incident seismic waves is constructed and applied to the seismic damage evolution process analysis of the underground powerhouse of Azad Pattan Hydropower Station. The simulated results reveal that the obliquely incident earthquake aggravates the seismic reaction of lining structure, which mainly lies in the amplitudes of the displacement and stress fluctuations. Some areas at the upper side wall and the arch of the linings in the main powerhouse are damaged to the most severe degree. After considering the dynamic contact, the seismic response of caverns near interface further increases, and the evident seismic deterioration effect and shear slip failure occur at interface. The dislocation between interlayers is more obvious, and the maximum dislocation displacement tends to be stable at 5.9 cm. Besides, the seismic damage characteristics and failure modes of the lining structures of the underground powerhouse in interbedded rock mass are discussed from the transverse and longitudinal angles.

  • [1]
    SHEN Y S, GAO B, YANG X M, et al. Seismic damage mechanism and dynamic deformation characteristic analysis of mountain tunnel after Wenchuan earthquake[J]. Engineering Geology, 2014, 180: 85-98. doi: 10.1016/j.enggeo.2014.07.017
    [2]
    李小军, 卢滔. 水电站地下厂房洞室群地震反应显式有限元分析[J]. 水力发电学报, 2009, 28(5): 41-46. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB200905008.htm

    LI Xiao-jun, LU Tao. Explicit finite element analysis of earthquake response for underground caverns of hydropower stations[J]. Journal of Hydroelectric Engineering, 2009, 28(5): 41-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB200905008.htm
    [3]
    杜修力, 陈维, 李亮, 等. 斜入射条件下地下结构时域地震反应分析初探[J]. 震灾防御技术, 2007, 2(3): 290-296. doi: 10.3969/j.issn.1673-5722.2007.03.009

    DU Xiu-li, CHEN Wei, LI Liang, et al. Preliminary study of time-domain seismic response for underground structures to obliquely incident seismic waves[J]. Technology for Earthquake Disaster Prevention, 2007, 2(3): 290-296. (in Chinese) doi: 10.3969/j.issn.1673-5722.2007.03.009
    [4]
    尤红兵, 赵凤新, 荣棉水. 地震波斜入射时水平层状场地的非线性地震反应[J]. 岩土工程学报, 2009, 31(2): 234-240. doi: 10.3321/j.issn:1000-4548.2009.02.014

    YOU Hong-bing, ZHAO Feng-xin, RONG Mian-shui. Nonlinear seismic response of horizontal layered site due to inclined wave[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 234-240. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.02.014
    [5]
    杜修力, 黄景琦, 赵密, 等. SV 波斜入射对岩体隧道洞身段地震响应影响研究[J]. 岩土工程学报, 2014, 36(8): 1400-1406. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201408005.htm

    DU Xiu-li, HUANG Jing-qi, ZHAO Mi, et al. Effect of oblique incidence of SV waves on seismic response of portal sections of rock tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1400-1406. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201408005.htm
    [6]
    赵宝友, 马震岳, 丁秀丽. 不同地震动输入方向下的大型地下岩体洞室群地震反应分析[J]. 岩石力学与工程学报, 2010, 29(增刊1): 3395-3402. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1117.htm

    ZHAO Bao-you, MA Zhen-yue, DING Xiu-li. Seismic response of a large underground rock cavern groups considering different incident angles of earthquake waves[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 3395-3402. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1117.htm
    [7]
    赵密, 欧阳文龙, 黄景琦, 等. P波作用下跨断层隧道轴线地震响应分析[J]. 岩土力学, 2019, 40(9): 3645-3655. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909039.htm

    ZHAO Mi, OUYANG Wen-long, HUANG Jing-qi, et al. Analysis of axis dynamic response of rock tunnels through fault fracture zone under P waves of earthquake[J]. Rock and Soil Mechanics, 2019, 40(9): 3645-3655. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909039.htm
    [8]
    黄景琦, 杜修力, 田志敏, 等. 斜入射SV波对地铁车站地震响应的影响[J]. 工程力学, 2014, 31(9): 81-88, 103. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201409013.htm

    HUANG Jing-qi, DU Xiu-li, TIAN Zhi-min, et al. Effect of the oblique incidence of seismic SV waves on the seismic response of subway station structure[J]. Engineering Mechanics, 2014, 31(9): 81-88, 103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201409013.htm
    [9]
    张志国. 地下洞室群地震响应数值分析方法研究[D]. 武汉: 武汉大学, 2012: 76-87.

    ZHANG Zhi-guo. Study on Numerical Simulation Methods for Seismic Response of Underground Cavern Complexes[D]. Wuhan: Wuhan University, 2012: 76-87. (in Chinese)
    [10]
    KOURETZIS G P, BOUCKOVALAS G D, GANTES C J. 3-D shell analysis of cylindrical underground structures under seismic shear (S) wave action[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(10): 909-921. doi: 10.1016/j.soildyn.2006.02.002
    [11]
    LIU J B, SHARAN S K. Analysis of dynamic contact of cracks in viscoelastic media[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 121(1/2/3/4): 187-200.
    [12]
    LEE H S, PARK Y J, CHO T F, et al. Influence of asperity degradation on the mechanical behavior of rough rock joints under cyclic shear loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(7): 967-980.
    [13]
    刘博, 李海波, 朱小明. 循环剪切荷载作用下岩石节理强度劣化规律试验模拟研究[J]. 岩石力学与工程学报, 2011, 30(10): 2033-2039. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201110011.htm

    LIU Bo, LI Hai-bo, ZHU Xiao-ming. Experiment simulation study of strength degradation of rock joints under cyclic shear loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 2033-2039. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201110011.htm
    [14]
    倪卫达, 唐辉明, 刘晓, 等. 考虑结构面震动劣化的岩质边坡动力稳定分析[J]. 岩石力学与工程学报, 2013, 32(3): 492-500. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201303008.htm

    NI Wei-da, TANG Hui-ming, LIU Xiao, et al. Dynamic stability analysis of rock slope considering vibration deterioration of structural planes under seismic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(3): 492-500. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201303008.htm
    [15]
    刘晶波, 王振宇, 杜修力, 等. 波动问题中的三维时域粘弹性人工边界[J]. 工程力学, 2005, 22(6): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200506007.htm

    LIU Jing-bo, WANG Zhen-yu, DU Xiu-li, et al. Three- dimensional visco-elastic artificial boundaries in time domain for wave motion problems[J]. Engineering Mechanics, 2005, 22(6): 46-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200506007.htm
    [16]
    杜修力. 工程波动理论与方法[M]. 北京: 科学出版社, 2009: 15-21.

    DU Xiu-li. Theories and Methods of Wave Motion for Engineering[M]. Beijing: Science Press, 2009: 15-21. (in Chinese)
    [17]
    ZHOU Hao, XIAO Ming, YANG Yang, et al. Seismic response analysis method for lining structure in underground cavern of hydropower station[J]. KSCE Journal of Civil Engineering, 2019, 23(3): 1236-1247.
    [18]
    李海波, 冯海鹏, 刘博. 不同剪切速率下岩石节理的强度特性研究[J]. 岩石力学与工程学报, 2006, 25(12): 2435-2440. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200612011.htm

    LI Hai-bo, FENG Hai-peng, LIU Bo. Study on strength behaviors of rock joints under different shearing deformation velocities[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12): 2435-2440. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200612011.htm
    [19]
    张志国, 肖明, 陈俊涛. 大型地下洞室地震灾变过程三维动力有限元模拟[J]. 岩石力学与工程学报, 2011, 30(3): 509-523. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201103011.htm

    ZHANG Zhi-guo, XIAO Ming, CHEN Jun-tao. Simulation of earthquake disaster process of large-scale underground caverns using three-dimensional dynamic finite element method[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(3): 509-523. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201103011.htm
    [20]
    MAZARS J. A description of micro- and macro-scale damage of concrete structures[J]. Engineering Fracture Mechanics, 1986, 25(5/6): 729-737.
    [21]
    隋斌, 朱维申, 李晓静. 地震荷载作用下大型地下洞室群的动态响应模拟[J]. 岩土工程学报, 2008, 30(12): 1877-1882. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200812024.htm

    SUI Bin, ZHU Wei-shen, LI Xiao-jing. Simulation on dynamic response of large underground opening complex under seismic loads[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1877-1882. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200812024.htm
  • Related Articles

    [1]XU Youjun, ZHANG zhengxi, ZHANG Chao, LIU Tianyu, ZHANG Xu. Theoretical study on equivalent stiffness of F-type socket joints in rectangular pipe jacking tunnels[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 506-515. DOI: 10.11779/CJGE20231165
    [2]ZHONG Zilan, ZHANG Yabo, HOU Benwei, HAN Junyan, DU Xiuli. Seismic response analysis and damage assessment of urban water supply networks considering influences of crossing pipelines[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 964-975. DOI: 10.11779/CJGE20220201
    [3]YANG Xiao-hui, QIAN Bao, Guo Nan, DING Bao-yan, ZHANG Guo-hua. Influence factors and deformation laws of uneven settlement of a loess-filling foundation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 207-212. DOI: 10.11779/CJGE2022S1037
    [4]JIN Cong-cong, CHI Shi-chun, NIE Zhang-bo. Seismic safety analysis of high earth-rockfill dams based on seismic deformational fragility[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 334-343. DOI: 10.11779/CJGE202002015
    [5]LIU Yu-yang, XIE Yong-li, LAI Hong-peng, ZHANG Hong-guang. Influence of foundation settlement on mechanical performance of shear keys of segment joints in immersed tube tunnels[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2235-2244. DOI: 10.11779/CJGE201512013
    [6]ZHU He-hua, HUANG Bo-qi, LI Xiao-jun, HASHIMOTO Tadashi. Unified model for internal force and deformation of shield segment joints and experimental analysis[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2153-2160. DOI: 10.11779/CJGE201412001
    [7]LIU Chengdong, MA Fuheng, DAI Qun. Application of wild value diagnosis technique in dam safety monitoring data analysis[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1726-1728.
    [8]ZHAO Shangyi, ZHENG Yingren, SHI Weimin, WANG Jinglin. Analysis on safety factor of slope by strength reduction FEM[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(3): 343-346.
    [10]Tan Zhiming, Yao Zukang. Structural Analysis of Concrete Pavements on Soft Subsoils with Differential Settlements[J]. Chinese Journal of Geotechnical Engineering, 1989, 11(2): 54-63.
  • Cited by

    Periodical cited type(12)

    1. 李书亮, 李科, 郭鸿雁, 陈建忠. 基于SSA-LSTM-WNN的沉管隧道接头张合预测. 地下空间与工程学报. 2025(05)
    2. 孙超,张光伟,答武强,余祖峰. 某沉管隧道病害分析及处置措施构思. 隧道建设(中英文). 2025(02): 415-424 .
    3. 仉文岗,唐学成,刘汉龙,杨文钰,刘智成,王鲁琦,李红蕊. 静-动荷载作用下欠固结软土盾构隧道长期沉降与最优埋深计算方法. 隧道建设(中英文). 2024(09): 1829-1840 .
    4. 刘剑,金耀,朱小明. 沉管隧道运营期健康监测技术研究及应用. 公路. 2024(10): 437-442 .
    5. 王延宁,周桓竹,俞缙. 沉管隧道运维期回淤影响下的长期沉降模型. 岩土工程学报. 2023(02): 292-300 . 本站查看
    6. 王延宁,周桓竹,郑俊杰. 考虑地基性状时间变化的沉管隧道变形分析. 铁道科学与工程学报. 2023(09): 3453-3462 .
    7. 姬海,宋神友,徐国平,黄清飞,邓斌. 钢壳混凝土沉管抗剪连接件力学特性研究. 公路. 2023(09): 427-438 .
    8. 周桓竹,王延宁,寇晓强. 考虑潮汐荷载作用的沉管隧道竖向位移计算. 铁道科学与工程学报. 2022(03): 790-797 .
    9. WANG Yan-ning,ZHOU Huan-zhu,WANG Le-chen. Settlement Mode Analysis for An Immersed Tube Tunnel Considering A Nonuniform Foundation Under Tidal Load. China Ocean Engineering. 2022(03): 427-438 .
    10. 丁浩,景强,闫禹,张娜,李旺林. 沉管隧道运维技术发展现状综述. 中国公路学报. 2022(10): 1-12 .
    11. 谢雄耀,张乃元,周彪,王晓佳. 滨海软土沉管隧道结构性能演化规律及成因分析. 工业建筑. 2021(07): 1-5+24 .
    12. 张文春,李承航. 深基坑及周边建筑物的沉降监测实例分析. 北方建筑. 2020(03): 8-12 .

    Other cited types(9)

Catalog

    YANG Bu-yun

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Article views (346) PDF downloads (361) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return